Skip to main content
Log in

Global fixed-time synchronization for coupled time-varying delayed neural networks with multi-weights and uncertain couplings via periodically semi-intermittent adaptive control

  • Mathematical methods in data science
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the semi-intermittent synchronization in fixed time for hybrid couple neural networks with uncertain multiple weights and discontinuous nonlinearity. Firstly, the principle of the global convergence in fixed time with respect to nonlinear systems with periodically semi-intermittent scheme is developed. Secondly, in order to realize the global synchronization goal in fixed time, novel controllers, which are composed of the semi-intermittent adaptive controller and semi-intermittent feedback controller, are designed. Under Filippov differential inclusion framework, by applying Lyapunov–Krasovskii functional method and inequality analysis technique, the global synchronization conditions in fixed time are achieved in the form of linear matrix inequalities. In addition, the upper bound of the settling time, which is adjusted in advance by choosing the controller parameters, is estimated accurately. Finally, the correctness of the theoretical results and the feasibility of the designed controller are verified by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Boyd B, Ghoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  Google Scholar 

  • Cai Z, Huang L, Guo Z, Zhang L, Wan X (2015) Periodic synchronization control of discontinuous delayed networks by using extended Filippov framework. Neural Netw 68:96–110

    Article  Google Scholar 

  • Cao J, Li L (2009) Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw 22:335–342

    Article  Google Scholar 

  • Dehmer M, Basak S (2012) Statistical and machine learning approaches for network analysis. Wiley, Hoboken

    Book  Google Scholar 

  • Forti M, Nistri P (2003) Global convergence of neural networks with discontinuous neuron activations. Circuits Syst I Regul Pap IEEE Trans 50:1421–1435

    Article  MathSciNet  Google Scholar 

  • Forti M, Nistri P, Papini D (2005) Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw 16:1449–1463

    Article  Google Scholar 

  • Gan Q, Feng X, Hui S (2019) Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control. J Frankl Inst 356:6656–6677

    Article  MathSciNet  Google Scholar 

  • He C, Li J (2018) Hybrid adaptive synchronization strategy for linearly coupled reaction-diffusion neural networks with time-varying coupling strength. Neurocomputing 275:1769–1781

    Article  Google Scholar 

  • Hu C, Yu J, Chen Z (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw 89:74–82

    Article  Google Scholar 

  • Hu J, Cao J, Cheng Q (2014) Adaptive pinning synchronization of coupled inertial delayed neural networks. International symposium on neural networks. Springer International Publishing, vol 8866, pp 35–42

  • Li N, Cao J (2014) Periodically intermittent control on robust exponential synchronization for switched interval coupled networks. Neurocomputing 131:52–58

    Article  Google Scholar 

  • Li J, Zhang W, Chen M (2013) Synchronization of delayed reaction-diffusion neural networks via an adaptive learning control approach. Comput Math Appl 65:1775–1785

    Article  MathSciNet  Google Scholar 

  • Liang J, Wang Z, Liu Y, Liu X (2008) Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks. IEEE Trans Neural Netw 19:1910–1921

    Article  Google Scholar 

  • Liu M, Wu H (2018) Stochastic finite-time synchronization for discontinuous semi-Markovian switching neural networks with time delays and noise disturbance. Neurocomputing 310:246–264

    Article  Google Scholar 

  • Liu H, He W, Han Q (2018) Fixed-Time synchronization for coupled delayed neural networks with discontinuous or continuous activations. Neurocomputing 314:143–153

    Article  Google Scholar 

  • Liu J, Wu H, Cao J (2020) Event-triggered synchronization in fixed time for semi-Markov switching dynamical complex networks with multiple weights and discontinuous nonlinearity. Commun Nonlinear Sci Numer Simul 90:105400

    MathSciNet  MATH  Google Scholar 

  • Lu W, Chen T (2004) Synchronization of coupled connected neural networks with delays. IEEE Trans Circuits Syst Part I: Regul Pap 51:2491–2503

    Article  MathSciNet  Google Scholar 

  • Mehrdad S, Mahdi P (2018) fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design. Chaos, Solitons Fractals 113:135–147

    Article  MathSciNet  Google Scholar 

  • Mei J, Jiang M, Wang X (2014) Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Frankl Inst 351:2691–2710

    Article  MathSciNet  Google Scholar 

  • Peng X, Wu H (2018) Robust Mittag-Leffler synchronization for uncertain fractional-order discontinuous neural networks via non-fragile control strategy. Neural Process Lett 48:1521–1542

    Article  Google Scholar 

  • Peng X, Wu H, Cao J (2019) Global non-fragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations. IEEE Trans Neural Netw Learn Syst 30:2123–2137

    Article  MathSciNet  Google Scholar 

  • Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transa Autom Control 57:2106–2110

    Article  MathSciNet  Google Scholar 

  • Qiu S, Huang Y, Ren S (2018) Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay. Neurocomputing 275:1250–1260

    Article  Google Scholar 

  • Suykens J, Osipov G (2008) Introduction to focus issue: synchronization in complex networks. Chaos 18:268–271

    Article  Google Scholar 

  • Wang Z, Wu H (2019) Global synchronization in fixed time for semi-Markovian switching complex dynamical networks with hybrid couplings and time-varying delays. Nonlinear Dyn 95:2031–2062

    Article  Google Scholar 

  • Wang L, Zeng Z, Hu J (2017) Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations. Neural Netw 87:122–131

    Article  Google Scholar 

  • Wang J, Zhang X, Wu H (2018) Finite-time passivity of adaptive coupled neural networks with undirected and directed topologies. IEEE Trans Cybernet 99:1–12

    Google Scholar 

  • Wang P, Yu H, Su H (2018) Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control. Nonlinear Anal Hybrid Syst 29:395–413

    Article  MathSciNet  Google Scholar 

  • Wang J, Zhang X, Wu H (2019) Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights. IEEE Trans Cybernet 49:3385–3397

    Article  Google Scholar 

  • Wei P, Wang J, Huang Y, Xu B, Ren S (2016) Impulsive control for the synchronization of coupled neural networks with reaction-diffusion terms. Neurocomputing 207:539–547

    Article  Google Scholar 

  • Xu W, Zhu S, Fang X, Wang W (2019) Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays. Phys A 535:1–12

    MathSciNet  Google Scholar 

  • Yang M, Wang Y, Xiao J (2010) Robust synchronization of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays. Nonlinear Anal Real World Appl 11:3008–3020

  • Yang S, Li C, Huang T (2016) Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw 75:162–172

    Article  Google Scholar 

  • Zhang C, Shi L (2019) Exponential synchronization of stochastic complex networks with multi-weights: a graph-theoretic approach. J Frankl Inst 356:4106–4123

    Article  MathSciNet  Google Scholar 

  • Zhao W, Wu H (2018) Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays. Adv Differ Equ 2018:1–21. https://doi.org/10.1186/s13662-018-1666-z

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Y, Ping H, Nik H (2015) Robust adaptive synchronization of uncertain complex networks with multiple time-varying coupled delays. Complexity 20:62–73

    Article  MathSciNet  Google Scholar 

  • Zhao Y, Fu F, Wang J (2018) Synchronization of hybrid-coupled delayed dynamical networks with noises by partial mixed impulsive control strategy. Phys A Stat Mech Appl 492:S0378437117311354

    MathSciNet  Google Scholar 

  • Zheng M, Li L, Peng H (2018) Globally fixed-time synchronization of coupled neutral-type neural network with mixed time-varying delays. Plos One 13:473–482

    Google Scholar 

  • Zhou J, Dong H, Feng J (2017) Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates. Appl Math Comput 293:617–629

    MathSciNet  MATH  Google Scholar 

  • Zhu X, Yang X, Alsaadi F (2017) Fixed-time synchronization of coupled discontinuous neural networks with nonidentical perturbations. Neural Process Lett 11:1–14

    Google Scholar 

  • Zochowski M (2000) Intermittent dynamical control. Phys D 145:181–190

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the reviewers for their insightful and constructive comments, which help to enrich the content and improve the presentation of the results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was jointly supported by the Natural Science Foundation of Hebei Province of China (A2018203288) and High level talent project of Hebei Province of China (C2015003054).

Appendices

Appendix I

The following corollaries are extended form Hu et al. (2017) and Zheng et al. (2018), respectively.

Corollary 6.1

Suppose \(\varpi =1\), assumptions \((A_1)\), \((A_2)\) are satisfied and \({\dot{\tau }}(t)_\iota \le \mu _\iota <1\), \(\iota =1,2,\ldots ,p\). If there exists matrix \(S\in R^{Nn\times Nn}\), constant \(0<\mu <1\), such that the following LMIs hold:

$$\begin{aligned} \Theta =\begin{pmatrix}\Phi _{11}&{}\Phi _{12}\\ \Phi _{21}&{}\Phi _{22} \end{pmatrix}<0, \\ K-{\hat{\omega }}(I_N\otimes B)-{\hat{\omega }}(I_N\otimes A)>0. \end{aligned}$$

Then, the driven system (1) and the respond (3) can be achieved fixed-time synchronization via controller (8). Moreover, the settling time is given by:

$$\begin{aligned} T({{\tilde{e}}}, {\tilde{\eta }})\le T_{max}=\frac{2}{(Nn)^{\frac{1-q}{2}}{\tilde{\rho }}\varpi (q-1)}+(\frac{2}{\rho \varpi (1-\delta )}), \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&\Phi _{11}=-2(I_{N}\otimes Q)+2{\hat{z}}(I_{N}\otimes A)+2\sum ^{p}_{\iota =1}u_{\iota }(U^\iota \otimes \Gamma ^\iota )^{s}\\&\quad \quad +u_{\iota }(U^\iota \otimes (\sigma HH^T+\sigma ^{-1}MM^T))\\&\quad \quad +2\sum ^{p}_{\iota =1}v_{\iota }({{\mathcal {V}}}^{\iota }\otimes \beta ^\iota )S(\beta ^\iota \otimes {{\mathcal {V}}}^{\iota })^{T}\\&\quad \quad +\sigma \sum ^{p}_{\iota =1}v_{\iota }({{\mathcal {V}}}^{\iota }\otimes {{\tilde{H}}}{{\tilde{H}}}^T)+\sum ^{p}_{\iota =1}\frac{v_{\iota }}{1-\mu }(I_{N}\otimes I_n),\\&\quad \Phi _{12}={\hat{z}}(I_{N}\otimes B),\quad \Phi _{21}={\hat{z}}(I_{N}\otimes B), \\&\quad \Phi _{22}=(I_{N}\otimes I_{n})+\sigma ^{-1}\sum ^{p}_{\iota =1}v_{\iota }({{\mathcal {V}}}^{\iota }\otimes {{\tilde{M}}}^T{{\tilde{M}}})\\&\quad -\sigma ^{-1}\sum ^{p}_{\iota =1}v_{\iota }(I_{N}\otimes I_n),\\&\quad \rho =\text {min}\{\eta _{1}, \eta _{3}, \lambda _1\},\ \ \ {\tilde{\rho }}=\text {min}\{\eta _{2}, \eta _{4}, \lambda _2\},\\&\quad K=\text {diag}(k_1,k_2,\ldots ,k_N)\ \ \ \ \ \eta =[|e_{i}(t)|, |e_{i}(t-\tau )|]^{T}. \end{aligned} \end{aligned}$$

Suppose \(p=1\), the driven system becomes the HCNNs with single weight and uncertain couplings.

Corollary 6.2

Suppose \(p=1\), assumptions \((A_1)\), \((A_2)\) are satisfied and \({\dot{\tau }}(t)\le \mu <1\). If there exists matrix \(S\in R^{Nn\times Nn}\), constant \(0<\mu <1\), such that the following LMIs hold:

$$\begin{aligned} \Theta =\begin{pmatrix}\Phi _{11}&{}\Phi _{12}\\ \Phi _{21}&{}\Phi _{22} \end{pmatrix}<0, \\ K-{\hat{\omega }}(I_N\otimes B)-{\hat{\omega }}(I_N\otimes A)>0. \end{aligned}$$

Then, the driven system (1) and the respond system (3) can be achieved fixed-time synchronization via controller (8). Moreover, the settling time is given as follows:

$$\begin{aligned} T({{\tilde{e}}}, {\tilde{\eta }})\le T_{max}=\frac{2}{(Nn)^{\frac{1-q}{2}}{\tilde{\rho }}\varpi (q-1)}+\left( \frac{2}{\rho \varpi (1-\delta )}\right) , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&\Phi _{11}=-2(I_{N}\otimes Q)+2{\hat{z}}(I_{N}\otimes A)+2u(U\otimes \Gamma )^{s}\\&\ \ \ \ \ \ \ \ \ \ \ +u(U\otimes (\sigma HH^T+\sigma ^{-1}MM^T))\\&\ \ \ \ \ \ \ \ \ \ \ +2v({{\mathcal {V}}}\otimes \beta )S(\beta \otimes {{\mathcal {V}}})^{T}\\&\ \ \ \ \ \ \ \ \ \ \ +\sigma v({{\mathcal {V}}}\otimes {{\tilde{H}}}{{\tilde{H}}}^T)+\frac{v}{1-\mu }(I_{N}\otimes I_n),\\&\Phi _{12}={\hat{z}}(I_{N}\otimes B),\quad \Phi _{21}={\hat{z}}(I_{N}\otimes B), \\&\Phi _{22}=(I_{N}\otimes I_{n})+\sigma ^{-1}v({{\mathcal {V}}}\otimes {{\tilde{M}}}^T{{\tilde{M}}})-\sigma ^{-1}v(I_{N}\otimes I_n),\\&\rho =\text {min}\{\eta _{1}, \eta _{3}, \lambda _1\},\ \ \ {\tilde{\rho }}=\text {min}\{\eta _{2}, \eta _{4}, \lambda _2\},\\&K=\text {diag}(k_1,k_2,\ldots ,k_N), \eta =[|e_{i}(t)|, |e_{i}(t-\tau )|]^{T}. \end{aligned} \end{aligned}$$

Appendix II

The parameters in the HCNNs (1) and (3) are described as follows:

$$\begin{aligned}&Q= \begin{bmatrix} 0.33 &{} 0 &{} 0\\ 0 &{} 0.21 &{} 0\\ 0 &{} 0 &{} 0.29 \end{bmatrix}, A= \begin{bmatrix} 0.32 &{} 0.03 &{} 1.24\\ 0.03 &{} 1.32 &{} 0.33\\ 1.24 &{} 0.33 &{} 1.02 \end{bmatrix},\\&B= \begin{bmatrix} 0.41 &{} 0.25 &{} 0.53\\ 0.25 &{} 1.14 &{} 1.19\\ 0.53 &{} 1.19 &{} 1.51 \end{bmatrix}, \Gamma ^1= \begin{bmatrix} 1.11 &{} 0 &{} 0\\ 0 &{} 0.14 &{} 0\\ 0 &{} 0 &{} 1.82 \end{bmatrix},\\&\Gamma ^2= \begin{bmatrix} 1.24 &{} 0 &{} 0\\ 0 &{} 1.24 &{} 0\\ 0 &{} 0 &{} 0.71 \end{bmatrix}, \Gamma ^3= \begin{bmatrix} 1.16 &{} 0 &{} 0\\ 0 &{} 0.34 &{} 0\\ 0 &{} 0 &{} 0.13 \end{bmatrix},\\&\beta ^1= \begin{bmatrix} 0.08 &{} 0 &{} 0\\ 0 &{} 1.08 &{} 0\\ 0 &{} 0 &{} 1.06 \end{bmatrix}, \beta ^2= \begin{bmatrix} 0.12 &{} 0 &{} 0\\ 0 &{} 0.34 &{} 0\\ 0 &{} 0 &{} 0.02 \end{bmatrix},\\&\beta ^3= \begin{bmatrix} 1.45 &{} 0 &{} 0\\ 0 &{} 1.51 &{} 0\\ 0 &{} 0 &{} 0.45 \end{bmatrix}, H^1= \begin{bmatrix} 1 &{} 0 &{} 0\\ 0 &{} 3 &{} 0\\ 0 &{} 0 &{} 5 \end{bmatrix},\\&H^2= \begin{bmatrix} 0.45 &{} 0 &{} 0\\ 0 &{} 0.34 &{} 0\\ 0 &{} 0 &{} 0.69 \end{bmatrix}, H^3= \begin{bmatrix} 2.11 &{} 0 &{} 0\\ 0 &{} 1.03 &{} 0\\ 0 &{} 0 &{} 0.27 \end{bmatrix},\\&F^1(t)= \begin{bmatrix} 0.2\sin t &{} 0 &{} 0\\ 0 &{} 0.15 &{} 0\\ 0 &{} 0 &{} 0.61 \end{bmatrix}, M^1= \begin{bmatrix} 0.31 &{} 0 &{} 0\\ 0 &{} 0.62 &{} 0\\ 0 &{} 0 &{} 0.24 \end{bmatrix},\\&F^2(t)= \begin{bmatrix} 0.12 &{} 0 &{} 0\\ 0 &{} 0.2\sin t &{} 0\\ 0 &{} 0 &{} 0.04 \end{bmatrix}, M^2= \begin{bmatrix} 0.5 &{} 0 &{} 0\\ 0 &{} 0.14 &{} 0\\ 0 &{} 0 &{} 0.38 \end{bmatrix},\\&F^3(t)= \begin{bmatrix} 0.04 &{} 0 &{} 0\\ 0 &{} 0.08 &{} 0\\ 0 &{} 0 &{} 0.13\cos t \end{bmatrix}, M^3= \begin{bmatrix} 0.46 &{} 0 &{} 0\\ 0 &{} 0.18 &{} 0\\ 0 &{} 0 &{} 0.32 \end{bmatrix},\\&{{\tilde{H}}}^1= \begin{bmatrix} 3 &{} 0 &{} 0\\ 0 &{} 2 &{} 0\\ 0 &{} 0 &{} 4 \end{bmatrix}, {{\tilde{H}}}^2= \begin{bmatrix} 0.16 &{} 0 &{} 0\\ 0 &{} 0.42 &{} 0\\ 0 &{} 0 &{} 0.28 \end{bmatrix},\\&{{\tilde{H}}}^3= \begin{bmatrix} 1.62 &{} 0 &{} 0\\ 0 &{} 0.28 &{} 0\\ 0 &{} 0 &{} 1.02 \end{bmatrix}, {{\tilde{F}}}^1(t)= \begin{bmatrix} 0.4\sin t &{} 0 &{} 0\\ 0 &{} 0.46 &{} 0\\ 0 &{} 0 &{} 0.24 \end{bmatrix},\\&{{\tilde{F}}}^2(t)= \begin{bmatrix} 0.28 &{} 0 &{} 0\\ 0 &{} 0.4\sin t &{} 0\\ 0 &{} 0 &{} 0.24 \end{bmatrix}, {{\tilde{M}}}^1= \begin{bmatrix} 0.62 &{} 0 &{} 0\\ 0 &{} 0.34 &{} 0\\ 0 &{} 0 &{} 0.18 \end{bmatrix},\\&{{\tilde{F}}}^3(t)= \begin{bmatrix} 0.24 &{} 0 &{} 0\\ 0 &{} 0.18 &{} 0\\ 0 &{} 0 &{} 0.14\cos t \end{bmatrix}, {{\tilde{M}}}^2= \begin{bmatrix} 0.26 &{} 0 &{} 0\\ 0 &{} 0.16 &{} 0\\ 0 &{} 0 &{} 0.28 \end{bmatrix},\\&{{\tilde{M}}}^3= \begin{bmatrix} 0.16 &{} 0 &{} 0\\ 0 &{} 0.24 &{} 0\\ 0 &{} 0 &{} 0.64 \end{bmatrix},\\&u_1=0.81, \ \ u_2=0.62, \ \ \ u_3=0.74,\\&v_1=0.12,\ \ v_2=0.04\ \ \ v_3=0.95. \end{aligned}$$

The nonlinear activation functions:

$$\begin{aligned}&f_{i1}(t,x_{i1}(t))=0.02x_{i1}(t)+0.015\text {sign}(x_{i1}(t)),\\&f_{i2}(t,x_{i2}(t))=0.08x_{i2}(t)+0.003\text {sign}(x_{i2}(t)),\\&f_{i3}(t,x_{i3}(t))=0.06x_{i3}(t)+0.008\text {sign}(x_{i3}(t)),\\ \end{aligned}$$

have been considered. It can be easily verified that assumptions \(A_2\) hold for \(z_{1}=0.02\), \(\omega _{1}=0.03\), \(z_{2}=0.08\), \(\omega _{2}=0.006\), \(z_{3}=0.06\), \(\omega _{3}=0.016\).

The non-delayed and time-varying delayed coupling configuration matrices read as:

$$\begin{aligned}&U^1= \begin{bmatrix} -4 &{} 2 &{} 0 &{} 1 &{} 1\\ 2 &{} 2 &{} -3&{} -1 &{} 0\\ 0 &{} -3 &{} -2 &{} 0 &{} 5\\ 1 &{} -1 &{} 0 &{} -2 &{} 2\\ 1 &{} 0 &{} 5 &{} 2 &{} -8 \end{bmatrix},\\&U^2= \begin{bmatrix} 4 &{} -1 &{} -1 &{} -1 &{} -1\\ -1 &{} 3 &{} 0 &{} 0 &{} -2\\ -1 &{} 0 &{} 2 &{} 1 &{} -2\\ -1 &{} 0 &{} 1 &{} -2 &{} 2 \\ -1&{} -2&{} -2&{} 2 &{} 3 \end{bmatrix},\\&U^3= \begin{bmatrix} -1.4 &{} 0.5 &{} 0.2 &{} 0.3 &{} 0.41\\ 0.5 &{} 1.5 &{} -1.1 &{} -0.2 &{} -0.7\\ 0.2 &{} -1.1 &{} 0.8 &{} 0.1 &{} 0\\ 0.3 &{} 0.2 &{} 0.1 &{} -3.3 &{} 3.1 \\ 0.4&{} -0.7&{} 0&{} 3.1 &{} -3.4 \end{bmatrix}, \end{aligned}$$

and

$$\begin{aligned}&{{\mathcal {V}}}^1= \begin{bmatrix} -2 &{} 0 &{} 1 &{} 1 &{} 0\\ 0 &{} 1 &{} -3 &{} 1 &{} 1\\ 1 &{} -3 &{} 1 &{} 1 &{} 0\\ 1 &{} 1 &{} 1 &{} -1 &{} -2\\ 0 &{} 1 &{} 0 &{}-2 &{} 1 \end{bmatrix},\\&{{\mathcal {V}}}^2= \begin{bmatrix} 1 &{} -1 &{} 0 &{} 0&{} 0\\ -1 &{} 2 &{} 0 &{} 0 &{} -1\\ 0 &{} 0&{} -1 &{} 2 &{} -1\\ 0 &{} 0 &{} 2 &{} -3 &{} 1\\ 0 &{} -1&{} -1 &{} 1 &{} 1 \end{bmatrix},\\&{{\mathcal {V}}}^3= \begin{bmatrix} -1 &{} -1 &{} 0 &{} 0&{} 2\\ -1 &{} 2 &{} 1 &{} -1 &{} -1\\ 0 &{} 1&{} -1 &{} 2 &{} -2\\ 0 &{} -1 &{} 2 &{} -1 &{} 0\\ 2 &{} -1&{} -2 &{} 0 &{} 3 \end{bmatrix}, \end{aligned}$$

respectively.

The time-varying delay

$$\begin{aligned} \begin{aligned} \tau (t)=0.5+0.5cos(t-1), \end{aligned} \end{aligned}$$

has been considered. It is easy to check that \(\tau _M=1\) and \({\dot{\tau }}=0.5\). The initial values of x on \([-1,0]\) are selected as:

$$\begin{aligned} \begin{aligned}&{\tilde{\varphi }}_{1}(t)=[2t^{2}+1,2.1cos2t+2,\sin 2t]^T,\\&{\tilde{\varphi }}_{2}(t)=[-2t^{2}+1,2\sin 2t+3,2\cos 2t]^T,\\&{\tilde{\varphi }}_{3}(t)=[0.2\sin 2t+1,0.1e^{3t}+e^{t},2t]^T,\\&{\tilde{\varphi }}_{4}(t)=[2\sin 2t-0.5,e^{t},3\cos 3t]^T\\&{\tilde{\varphi }}_{5}(t)=[2t^{2},2\cos 3t,3e^{2t}]^T. \end{aligned} \end{aligned}$$

The corresponding isolated HCNN of y for the initial conditions:

$$\begin{aligned} {\tilde{\psi }}(t)=[2\cos 3t,2\sin 2t,1.5e^{2t}]^T. \end{aligned}$$

The parameters in the controllers (8) are described as follows: \(\eta _1=3.125\), \(\eta _2=4.613\), \(\eta _3=3.795\), \(\eta _4=4.763\). Given the controller gains:

$$\begin{aligned}&K_1= \begin{bmatrix} 1.25 &{} 0 &{} 0\\ 0 &{} 1.05 &{} 0\\ 0 &{} 0 &{} 1.55 \end{bmatrix}, K_2= \begin{bmatrix} 2.05 &{} 0 &{} 0\\ 0 &{} 1.75 &{} 0\\ 0 &{} 0 &{} 1.37 \end{bmatrix},\\&K_3= \begin{bmatrix} 1.36 &{} 0 &{} 0\\ 0 &{} 1.92 &{} 0\\ 0 &{} 0 &{} 1.14 \end{bmatrix}, K_4= \begin{bmatrix} 3.211&{} 0&{} 0\\ 0&{} 4.06 &{} 0\\ 0 &{} 0 &{} 1.02 \end{bmatrix},\\&K_5= \begin{bmatrix} 1.82 &{} 0 &{} 0\\ 0 &{} 1.75 &{} 0\\ 0 &{} 0 &{} 1.32 \end{bmatrix}. \end{aligned}$$

In the simulation, all parameters are selected as \(\lambda _1=1.114\), \(\lambda _2=4.201\), \(T=0.5\), \(\theta =0.7\), \(m=5\), \(\delta =0.5\), \(q=1.5\). Thus, by simple calculation, we have:

$$\begin{aligned}&\triangle \Gamma ^1= \begin{bmatrix} 0.062\sin t &{} 0 &{} 0\\ 0 &{} 0.279 &{} 0\\ 0 &{} 0 &{} 0.732 \end{bmatrix},\\&\triangle \Gamma ^2= \begin{bmatrix} 0.024 &{} 0 &{} 0\\ 0 &{} 0.0119\sin t &{} 0\\ 0 &{} 0 &{} 0.0105 \end{bmatrix},\\&\triangle \Gamma ^3= \begin{bmatrix} 0.039 &{} 0 &{} 0\\ 0 &{} 0.015 &{} 0\\ 0 &{} 0 &{} 0.011\cos t \end{bmatrix},\\&\triangle \beta ^1= \begin{bmatrix} 0.744\sin t &{} 0 &{} 0\\ 0 &{} 0.1344 &{} 0\\ 0 &{} 0 &{} 0.1728 \end{bmatrix},\\&\triangle \beta ^2= \begin{bmatrix} 0.0116 &{} 0 &{} 0\\ 0 &{} 0.027 &{} 0\\ 0 &{} 0 &{} 0.0188 \end{bmatrix},\\&\triangle \beta ^3= \begin{bmatrix} 0.062 &{} 0 &{} 0\\ 0 &{} 0.017 &{} 0\\ 0 &{} 0 &{} 0.091\cos t \end{bmatrix}. \end{aligned}$$

By solving the LMIs (11) and (12), we obtain as:

$$\begin{aligned}&S_1=\text {diag}[1.42,1.73,2.14,2.91,1.35,0.14,\\&\ \ \ \ \ 3.25,1.41,0.15,1.03,1.47,1.28,1.39,1.75,1.01],\\&S_2=\text {diag}[1.05,0.43,1.24,1.01,0.52,0.84,1.25,\\&\ \ \ \ \ 2.07,0.45,1.34,1.29,2.14,0.16,0.18,1.37],\\&S_3=\text {diag}[1.47,0.53,1.16,0.25,1.17,0.85,0.36,\\&\ \ \ \ \ 1.49,1.24,0.36,0.19,2.14,1.34,0.17,0.13],\\&S_4=\text {diag}[1.26,0.31,0.14,1.41,1.35,0.14,0.11,\\&\ \ \ \ \ \ 0.41,0.46,1.05,1.37,0.16,0.19,3.18,2.07]\\&S_5=\text {diag}[0.94,1.01,3.17,1.47,0.35,0.04,1.37,\\&\ \ \ \ \ \ 0.55,0.31,0.58,0.14,0.39,1.04,2.45,1.07]. \end{aligned}$$

Appendix III

The parameters in the HCNNs (1) and (3) are described as follows:

$$\begin{aligned}&Q= \begin{bmatrix} 0.91 &{} 0 &{} 0\\ 0 &{} 0.12 &{} 0\\ 0 &{} 0 &{} 0.57 \end{bmatrix}, A= \begin{bmatrix} 0.32 &{} 0.03 &{} 0.74\\ 0.03 &{} 1.32 &{} 0.33\\ 0.74 &{} 0.33 &{} 0.35 \end{bmatrix},\\&B= \begin{bmatrix} 0.34 &{} 0.61 &{} 0.04\\ 0.61 &{} 0.24 &{} 0.14\\ 0.04 &{} 0.14 &{} 1.07 \end{bmatrix}, \Gamma ^1= \begin{bmatrix} 4.01 &{} 0 &{} 0\\ 0 &{} 3.14 &{} 0\\ 0 &{} 0 &{} 4.05 \end{bmatrix},\\&\Gamma ^2= \begin{bmatrix} 2.14 &{} 0 &{} 0\\ 0 &{} 1.71 &{} 0\\ 0 &{} 0 &{} 1.58 \end{bmatrix}, \Gamma ^3= \begin{bmatrix} 2.14 &{} 0 &{} 0\\ 0 &{} 1.41 &{} 0\\ 0 &{} 0 &{} 1.08 \end{bmatrix},\\&\beta ^1= \begin{bmatrix}, 2.14 &{} 0 &{} 0\\ 0 &{} 2.05 &{} 0\\ 0 &{} 0 &{} 2.19 \end{bmatrix}, \beta ^2= \begin{bmatrix}, 1.01 &{} 0 &{} 0\\ 0 &{} 1.27 &{} 0\\ 0 &{} 0 &{} 1.34 \end{bmatrix},\\&\beta ^3= \begin{bmatrix}, 1.81 &{} 0 &{} 0\\ 0 &{} 1.24 &{} 0\\ 0 &{} 0 &{} 1.34 \end{bmatrix}, H^1= \begin{bmatrix} 2 &{} 0 &{} 0\\ 0 &{} 3 &{} 0\\ 0 &{} 0 &{} 1 \end{bmatrix},\\&H^2= \begin{bmatrix} 0.28 &{} 0 &{} 0\\ 0 &{} 0.16 &{} 0\\ 0 &{} 0 &{} 0.34 \end{bmatrix}, H^3= \begin{bmatrix} 1.05 &{} 0 &{} 0\\ 0 &{} 2.31 &{} 0\\ 0 &{} 0 &{} 1.24 \end{bmatrix},\\&F^1(t)= \begin{bmatrix} 0.12\sin t &{} 0 &{} 0\\ 0 &{} 0.11 &{} 0\\ 0 &{} 0 &{} 0.56 \end{bmatrix}, M^1= \begin{bmatrix} 0.16 &{} 0 &{} 0\\ 0 &{} 0.28 &{} 0\\ 0 &{} 0 &{} 0.34 \end{bmatrix},\\&F^2(t)= \begin{bmatrix} 0.24 &{} 0 &{} 0\\ 0 &{} 0.32\sin t &{} 0\\ 0 &{} 0 &{} 0.44 \end{bmatrix}, M^2= \begin{bmatrix} 0.54 &{} 0 &{} 0\\ 0 &{} 0.38 &{} 0\\ 0 &{} 0 &{} 0.26 \end{bmatrix},\\&F^3(t)= \begin{bmatrix} 0.24 &{} 0 &{} 0\\ 0 &{} 0.48 &{} 0\\ 0 &{} 0 &{} 0.22\cos t \end{bmatrix}, M^3= \begin{bmatrix} 0.32 &{} 0 &{} 0\\ 0 &{} 0.24 &{} 0\\ 0 &{} 0 &{} 0.18 \end{bmatrix},\\&{{\tilde{H}}}^1= \begin{bmatrix} 2 &{} 0 &{} 0\\ 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 3 \end{bmatrix}, {{\tilde{H}}}^2= \begin{bmatrix} 0.06 &{} 0 &{} 0\\ 0 &{} 0.32 &{} 0\\ 0 &{} 0 &{} 0.16 \end{bmatrix},\\&{{\tilde{H}}}^3= \begin{bmatrix} 1.32 &{} 0 &{} 0\\ 0 &{} 1.28 &{} 0\\ 0 &{} 0 &{} 0.34 \end{bmatrix}, {{\tilde{F}}}^1(t)= \begin{bmatrix} 0.24\sin t &{} 0 &{} 0\\ 0 &{} 0.34 &{} 0\\ 0 &{} 0 &{} 0.16 \end{bmatrix},\\&{{\tilde{F}}}^2(t)= \begin{bmatrix} 0.14 &{} 0 &{} 0\\ 0 &{} 0.42\sin t &{} 0\\ 0 &{} 0 &{} 0.36 \end{bmatrix},\\&{{\tilde{F}}}^3(t)= \begin{bmatrix} 0.36 &{} 0 &{} 0\\ 0 &{} 0.12 &{} 0\\ 0 &{} 0 &{} 0.24\cos t \end{bmatrix},\\&{{\tilde{M}}}^1= \begin{bmatrix} 0.32 &{} 0 &{} 0\\ 0 &{} 0.26 &{} 0\\ 0 &{} 0 &{} 0.28 \end{bmatrix}, {{\tilde{M}}}^2= \begin{bmatrix} 0.16 &{} 0 &{} 0\\ 0 &{} 0.28 &{} 0\\ 0 &{} 0 &{} 0.34 \end{bmatrix},\\&{{\tilde{M}}}^3= \begin{bmatrix} 0.11 &{} 0 &{} 0\\ 0 &{} 0.23 &{} 0\\ 0 &{} 0 &{} 0.31 \end{bmatrix},\\&u_1=0.82, \ \ u_2=0.61, \ \ \ u_3=0.71,\\&v_1=0.12,\ \ v_2=0.14\ \ \ v_3=0.55. \end{aligned}$$

The nonlinear activation functions:

$$\begin{aligned}&f_{i1}(t,x_{i1}(t))=0.02x_{i1}(t)+0.015\text {sign}(x_{i1}(t)),\\&f_{i2}(t,x_{i2}(t))=0.08x_{i2}(t)+0.003\text {sign}(x_{i2}(t)),\\&f_{i3}(t,x_{i3}(t))=0.06x_{i3}(t)+0.008\text {sign}(x_{i3}(t)), \end{aligned}$$

have been considered. It can be easily verified that assumptions \(A_2\) hold for \(z_{1}=0.02\), \(\omega _{1}=0.03\), \(z_{2}=0.08\), \(\omega _{2}=0.006\), \(z_{3}=0.06\), \(\omega _{3}=0.016\).

The non-delayed and time-varying delayed coupling configuration matrices read as:

$$\begin{aligned}&U^1= \begin{bmatrix} 2 &{} 0 &{} 1 \\ 0 &{} -2&{} 2\\ 1 &{} 2 &{} -3 \end{bmatrix}, U^2= \begin{bmatrix} -1 &{} -1 &{} 2\\ -1 &{} 2 &{} -1 \\ 2 &{} -1 &{} -1 \end{bmatrix}, \end{aligned}$$
$$\begin{aligned}&U^3= \begin{bmatrix} 0.2 &{} 0.3 &{} 0.4\\ 0.3 &{} 1.5 &{} -1.8\\ 0.4 &{} -1.8 &{} 1.4 \end{bmatrix},\\ \end{aligned}$$

and

$$\begin{aligned}&{{\mathcal {V}}}^1= \begin{bmatrix} 1 &{} 1 &{} -2\\ 1 &{} -1 &{} 0 \\ -2 &{} 0 &{} 2 \end{bmatrix}, {{\mathcal {V}}}^2= \begin{bmatrix} 1 &{} -1 &{} 0 \\ -1 &{} 2 &{} -1 \\ 0 &{} -1&{} 1 \end{bmatrix},\\&{{\mathcal {V}}}^3= \begin{bmatrix} -1 &{} -1 &{} 0 \\ -1 &{} 2 &{} -1\\ 0 &{} -1&{} 1 \end{bmatrix},\\ \end{aligned}$$

respectively. The time-varying delay

$$\begin{aligned} \begin{aligned} \tau (t)=0.5+0.4cos(t-1), \end{aligned} \end{aligned}$$

has been considered. It is easy to check that \(\tau _M=1\) and \({\dot{\tau }}=0.4\). The initial values of x on \([-1,0]\) are selected as:

$$\begin{aligned} \begin{aligned}&{\tilde{\varphi }}_{1}(t)=[0.2\sin 2t+1,0.1e^{3t}+e^{t},2t]^T,\\&{\tilde{\varphi }}_{2}(t)=[2\sin 2t-0.5,e^{t},3\cos 3t]^T,\\&{\tilde{\varphi }}_{3}(t)=[2t^{2},2\cos 3t,3e^{2t}]^T. \end{aligned} \end{aligned}$$

The corresponding isolated HCNN of y(t) for the initial conditions

$$\begin{aligned} {\tilde{\psi }}(t)=[2\cos 3t,2\sin 2t,1.5e^{2t}]^T. \end{aligned}$$

The parameters in the controllers (28) are described as follows: \(\eta _1=2.256\), \(\eta _2=3.249\), \(\eta _3=2.316\), \(\eta _4=3.001\) and \(\varepsilon _i=0.12\). Given the controller gains:

$$\begin{aligned}&K_1= \begin{bmatrix} 1.05 &{} 0 &{} 0\\ 0 &{} 1.15 &{} 0\\ 0 &{} 0 &{} 1.51 \end{bmatrix},\\&K_2= \begin{bmatrix} 1.05 &{} 0 &{} 0\\ 0 &{} 1.31 &{} 0\\ 0 &{} 0 &{} 0.52 \end{bmatrix},\\&K_3= \begin{bmatrix} 1.13 &{} 0 &{} 0\\ 0 &{} 1.04 &{} 0\\ 0 &{} 0 &{} 1.26 \end{bmatrix}. \end{aligned}$$

In the simulation, all parameters are selected as \(T=0.4\), \(\theta =0.6\), \(m=5\), \(\delta =1.5\), \(q=0.5\). Thus, by simple calculation, we have

$$\begin{aligned}&\triangle \Gamma ^1= \begin{bmatrix} 0.0384\sin t &{} 0 &{} 0\\ 0 &{} 0.0924 &{} 0\\ 0 &{} 0 &{} 0.1904 \end{bmatrix},\\&\triangle \Gamma ^2= \begin{bmatrix} 0.0363 &{} 0 &{} 0\\ 0 &{} 0.019\sin t &{} 0\\ 0 &{} 0 &{} 0.035 \end{bmatrix},\\&\triangle \Gamma ^3= \begin{bmatrix} 0.08 &{} 0 &{} 0\\ 0 &{} 0.266 &{} 0\\ 0 &{} 0 &{} 0.049\cos t \end{bmatrix}, \end{aligned}$$
$$\begin{aligned}&\triangle \beta ^1= \begin{bmatrix} 0.0013 &{} 0 &{} 0\\ 0 &{} 0.038\sin t &{} 0\\ 0 &{} 0 &{} 0.019 \end{bmatrix},\\&\triangle \beta ^2= \begin{bmatrix} 0.1536 &{} 0 &{} 0\\ 0 &{} 0.0884 &{} 0\\ 0 &{} 0 &{} 0.1344 \end{bmatrix},\\&\triangle \beta ^3= \begin{bmatrix} 0.052 &{} 0 &{} 0\\ 0 &{} 0.035 &{} 0\\ 0 &{} 0 &{} 0.025\cos t \end{bmatrix}, \end{aligned}$$

By solving the LMIs (29) and (30), we obtain that

$$\begin{aligned}&S_1=\text {diag}[1.417,0.053,1.106,0.215,\\&\ \ \ \ \ \ \ \ \ \ \ 1.107,0.815,0.306,1.014,1.348],\\&S_2=\text {diag}[1.106,0.501,0.254,1.106,\\&\ \ \ \ \ \ \ \ \ \ \ \ 1.109,0.368,0.456,0.528,0.327]\\&S_3=\text {diag}[0.201,0.617,1.017,0.528,\\&\ \ \ \ \ \ \ \ \ \ \ \ \ 0.169,1.204,0.168,0.429,0.558]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, H. Global fixed-time synchronization for coupled time-varying delayed neural networks with multi-weights and uncertain couplings via periodically semi-intermittent adaptive control. Soft Comput 26, 1685–1702 (2022). https://doi.org/10.1007/s00500-021-06631-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06631-2

Keywords

Navigation