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Molecular approach to informal computing

K.-P. Zauner, M. Conrad

Abstract Cells and organisms are natural molecular
computers. The problem domains effectively addressed by
these systems are complementary to, and in fundamental
respects far exceed, the domains addressable by current
computing devices. The vast majority of information
processing problems do not have sufficiently compact
formal specifications to fall within the reach of program-
mable machines. Our working hypothesis is that the
unique properties of molecular materials are the key to
extending information processing technology beyond the
narrow limits of formal computing.
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1

Anatomy of information processing

Three choices must be be made in order to construct an
information processor (Fig. 1). It is necessary to define a
coding that translates the problem to be solved into input.
The processing map that assigns to each input a corre-
sponding output needs to be selected. And third, an in-
terpretation of the output that translates the response of
the processor into the solution of the problem has to be
chosen. These choices are not independent. The required
processing map can be simplified to any degree by the
selection of the coding and the interpretation maps. The
extreme case would be to encode the problems by their
solutions. Another example is the smoothing of an
evolutionary fitness landscape by choosing a suitable ge-
notype-phenotype map [1]. The price for simplifying the
processing is paid by reduced problem domain applica-
bility. The greater the problem specificity of coding and
interpretation the smaller the number of problems that can
be addressed.

The processor can be implemented by constructing a
physical realization of the processing map, or alternatively
a physical system can be selected and the coding and
interpretation tailored to its behavior. A computer is a
system that, starting from a state which encodes a problem
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description, will change following the laws of nature to a
state interpretable as the solution to the problem. The
fixed parameters in a scientific experiment can, from this
broad point of view, be taken as the problem description
and the values measured interpreted as the solution to the
problem [2]. Correspondingly, a conventional computer
can be seen as an apparatus for performing complex
electrodynamical experiments, the progress of which is
monitored through an array of pixel-size measurement
instruments. The user’s interpretation of the measured
values endows the experiment with significance that
extends beyond the system’s behavior in and of itself.

In general it is advantageous to use codings and inter-
pretations that are widely applicable. The realization of the
processing map therefore becomes an intricate issue. The
common approach today is to use a general purpose
automaton together with a formal specification of the
input-output map. This method however, can only
accommodate a small fraction of information processing
problems, as will be shown immediately below.

2

Limits to formal computing

The processing map will here be taken (in the case of
deterministic systems) as a function from input patterns to
output patterns. The input and output patterns are tem-
poral or spatial arrangements of elementary inputs and
outputs. Thus we can picture the processing map as a table
with two columns, one for arguments and one for values.
The arguments column lists all possible input patterns and
the values column the corresponding output patterns.
We will view a program as a formal specification of the
processing map relative to either a physical system that
can implement it, or relative to a formal system that can be
implemented by a physical system. The formal system is
equivalent to a user manual that defines the semantics of
the program. But note that knowing the program and the
user manual does not in general mean knowing what
processing map it specifies.

The processing map and the program are abstractions.
The goal is to obtain the physical implementation. There
are two possibilities. We can select and use a specific
physical system and choose a coding and interpretation.
Interpreting the image at the focal plane of a lens as a
Fourier transform is an example. Or we can engineer the
system to conform to a desired user manual. It is conve-
nient to engineer a general purpose system, one that can
be used to implement many processing maps. In this case
there must be some state change to choose which map is
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Fig. 1. General scheme of information processing

implemented. We here view this state setting as the
program. We could alternatively view the state setting as
input and the processing map as specific, but this is not
the natural view for a system that can be used in a general
purpose fashion. An architecture will be called structurally
programmable if programs can be encoded in it using a
simple user manual.

Consider first the case of a specific physical system. The
processing map is specified by the equation of motion
together with the initial and boundary conditions. Given
the conventions used here these conditions serve as the
input. If the system is used for computing something other
than itself it is necessary to find a useful coding and
interpretation, as in the Fourier transform example noted
above.

With a general architecture it becomes convenient to
implement any map that has a short formal specification
on it. But care must be taken here. Such an architecture
pre-selects the possible processing maps that can be
implemented. The structural programmability feature
requires a formal description that is compact enough to be
communicated to the machine.

Let us put this in quantitative terms. Suppose that we
require a processing map to respond to n input bits with
an m-bit output. The map thus assigns to each of 2”
possible inputs one of the 2™ possible outputs. The
number of such maps is 2"*"). To select a particular map
in general requires m2" bit long specification (where, as
above, we view the bit sequence that selects or specifies the
map as the program). This is clearly infeasible even for
moderate problems [3, 4]. Consider, for example, a
100 x 100 bit input image that is to be classified whether it
does or does not contain a certain feature, i.e. a one bit
output. Specifying the processing map for this problem
may require 2'9°% bits!

There are exceptions. Some of the m2" bit long
specifications may be expressed in programs that are far
shorter. However, there exist far more long specifications
than short programs. This follows directly from consid-
erations of algorithmic complexity theory [5, 6]. A
program that is shorter than the mapping it specifies can
be considered as a compressed form of the map. The
algorithmic complexity of the majority of strings of length

n is approximately n, i.e., most strings are not to any
substantial extent compressible [7]. As a corollary most
processing maps do not have short specifications. This
means for almost all large processing maps, there exist no
programs of feasible length.

We can be more specific. Take the maximum feasible
length of a program as b bits. Then the fraction n of
processing maps with n-bit input and m-bit output that
can be specified with a program is

n= 2(b7m2")

where b is the bound on the practical length of programs.
The fraction of maps that can be specified by a program
thus decreases exponentially with 7, the number of input
bits. The implication is this: there is no hope of pro-
gramming arbitrary processing maps with more than log b
bits of input on a general purpose computer. Some maps
with more input bits may be programmed; but most
cannot be.

The situation can be summed up thus. Compression is
sometimes possible, but only rarely, since there exist so
many more long processing maps than short programs.
The inescapable fact is that most processing maps cannot
be specified by programs of acceptably short length. But
this does not mean that physical realizations of such maps
are impossible. We take it as the challenge for future
computing technology, in particular technologies of a
molecular nature, to find implementations for maps that
do not have compact formal specifications.

3

Transcending the limits

Why might such maps be interesting? Clearly humans and
organisms perform numerous activities that are entirely
out of reach so far as today’s artificial intelligence and
simulation programs are concerned. Pattern and object
recognition in an ambiguous environment are examples.
Language processing, creative mathematical work, design
and creation of computer programs are higher level ex-
amples. There are at least three reasons for supposing that
capabilities such as these require processing maps that do
not admit a sufficiently compressed formal description to
be communicated to a structurally programmable
machine.

The first is what might be referred to as situational
transformability. Suppose that we can provide a precise
description for a system, say a tool such as a hammer.
Then there is little doubt that we could express this
description in a formal computer program. But in fact we
cannot give such a description because there are practi-
cally an indefinitely large number of situations that the
hammer can be in and an indefinitely large number of
purposes it could be used for. It could be used as a judge’s
gavel or as a weapon, or as a way of testing knee reflexes,
and so on. No finite description exists that is complete for
the simple reason that new contexts can never be excluded.
Evolutionary approaches are open to seeing the hammer in
de novo contexts. This is exemplified by recent experi-
mental work showing that evolving electronic circuits can
exploit physical effects ignored in the user manual
description of the components [8]. Evolution is free to



discover and utilize such effects, whereas this is a priori
excluded in designs that are based on finite user manual
descriptions. The evolutionary process here exploits
context sensitivity of the componentry that the engineer
has attempted to suppress.

The second reason is connected with degree of context
sensitivity available. This has been limited as much as
possible in engineered systems. Natural systems are not
subject to such constraints. For evolution high context
sensitivity is a resource so far as realizing complex
processing maps is concerned. Recognizing an object in a
complex background is the type of task that requires such
a processing map. The computer languages that we use to
program conventional machines are context free. Context
sensitivity has to be built in at a virtual level, therefore
simulated on top of the base machine. This implies a
program of great length. The context sensitivity exhibited
by organisms and humans in their daily activities may be
so high that the processing maps required have no formal
specification of practical length, and therefore admit no
program description that could be communicated to
a general purpose computer.

Underlying the above functional difference is the third
reason: the structure-function relations of organisms are
radically different than those of today’s general purpose
machines. The latter are built out of components that can
be given a static, context free description. The structure-
function relations are programmable. The program that
formally specifies the processing map is encoded in the
states of the components and connections among them
according to simple, definite rules. This is a powerful
feature, since it allows the user to prepare the processing
map without considering the physics of the system. But
there is a price in terms of efficiency and evolvability
[9, 10]. The vast majority of interactions that could
contribute to implementing the processing map must be
frozen out, otherwise the requisite context freedom of the
components will be lost. Additionally the processing map
implemented is related to the state of the machine in an
extremely fragile manner, since any variation in the state is
tantamount to a variation in the formal specification of the
processing map. This follows from the fact that a one bit
change in the compressed description of the processing
map, M, will in general result in a compressed description
of a new processing map, M, that is many bits different
from M. The advantage of structural programmability is
that the system’s state can be set to execute any processing
map that is describable by a program that can be fit into it.
Nonprogrammable systems have the advantage that they
can realize processing maps whose formal description
cannot be fit into any structurally programmable
machines.

If a system is structurally programmable it has a com-
pressible description. All the underlying physics is ren-
dered irrelevant. Clearly the vast majority of systems are
not structurally programmable, just as the number of
compressible descriptions is very much smaller than the
number of noncompressible descriptions. The reasonable
assumption is that the human brain is capable of
performing the highly context sensitive, situationally
transformable tasks indicated above because it is an

essentially noncompressible system so far as formal
description is concerned, or at least far less compressible
than a structurally programmable machine.

Our working hypothesis is that it is through structurally
nonprogrammable systems that the limits on formal
computing can be transcended. Biological macromole-
cules, because of their context sensitivity and consequent
situational transformability, have rich potentialities in this
respect, and it is to these that we now turn.

4

Dynamic molecular approach

Let us focus our attention on proteins, in particular pro-
teins with enzymatic functionality. The main job of the
enzyme is to recognize a specific substrate molecule in a
complex milieu and to make or break a particular bond in
this molecule to form a specific product. How fast the
enzyme works is sensitive to some milieu molecules and
indifferent to others. The presence or absence of particular
molecules (control molecules) may be necessary in order
for the enzyme to recognize and act on the substrate.
Other milieu molecules may exert modulatory influences.
The enzyme, in short, is a context sensitive pattern
recognizer.

Our goal is to capture this inherent context sensitivity
for higher level signal processing, the kind that could for
example couple to an electronic machine. Consider a
conceptual device (Fig. 2) that illustrates how this can
be done and that serves as the basis for our laboratory
prototype. The device contains enzymes embedded in a
chemical medium. Input signals are coded into chemical
signals (e.g. various types of ions and organic molecules)
that are injected into the medium. The pattern of input
signals is thus transduced to a milieu context that deter-
mines the rate at which the enzymes convert substrate to
product. Optical monitoring of the progress of the reaction
is used to determine the output. The symbolic signal
pattern recognition problem is thus solved by utilizing the
physical mechanisms of biochemical dynamics.

The whole reaction medium implements the processing
map. The coding is determined by the choice of signal
substances to be injected and the manner in which the
elements of the input situation are represented by these
signals. The result of the computation is determined by the
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Fig. 2. Schematic picture of conformational pattern processing
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manner in which the user interprets the spectroscopic
measurements on the reaction medium. For example, a
different choice of wavelength or threshold can determine
a different classification of the input signal pattern. The
processing map can be altered by choosing different initial
milieu conditions or altering the enzyme. Altering the type
and concentration of chemicals used as input signals
corresponds to the choice of coding. Different specific
systems can be prepared by altering the reaction condi-
tions or the enzymes used. Choice can also be exercised
over what components of the reaction medium are to be
monitored for output. This corresponds to selecting the
interpretation map. If a multienzyme medium is used the
different enzymes will be linked by their effects on the
reaction milieu and by any metabolites that they share as
substrates. The whole dynamics then becomes increasingly
rich and increasingly amenable to different interpretations
(which is another way of saying that it is more situation-
ally transformable from the point of view of the user).

The dynamics are clearly not of the structurally pro-
grammable type. There is no way of knowing in advance
what the result of a different choice of milieu conditions
will be, and similarly for different choices with respect to
enzymes, signal substances, and features tracked for
output. An essentially evolutionary methodology must be
used to obtain desired input-output behavior.

So far we have taken the pattern recognition capacities
of enzymes as a phenomenological fact. It is instructive to
consider what it would take to duplicate this using a
structurally programmable machine. The main fact is that
the enzyme forms a complex with the substrate, largely on
the basis of dynamic shape complementarity [11]. This
means first of all that the enzyme and substrate explore
each other’s shapes. The vast random search power
inherent in the heat bath is brought to bear. It is of course
brought to bear in a highly coherent way by the the various
conformational motions of the protein. Here we have
typically between 200 to 400 amino acids, with roughly 60
electrons per amino acid. The enzyme can thus be thought
of as a vast processing network of nuclei and electrons that
fuses the input signals through its conformational
dynamics. All the milieu factors that affect these dynamics
determine the rate at which the enzyme draws in substrate
and releases product. The whole process utilizes the heat
bath as powerful search engine. The enzyme selectively
exploits the complexity of the heat bath by migrating
through a series of low energy conformational states [12].
Quantum features of loosely bound electrons likely speed
up the search process [13, 14].

Let us now imagine that we can write down the quan-
tum mechanical equation of motion (the Schrédinger
equation) for the device. Clearly solving this equation is
out of the question; treating even a small cluster of par-
ticles ab initio by the Schrédinger equation is out of reach
for the most powerful supercomputers. We take this dif-
ficulty as a foregone conclusion. Our question is whether
we could fit the equation into a structurally programmable
machine. On the surface it might seem that the Schro-
dinger equation provides a compact physical description
and therefore all physical-dynamical systems should have
short formal descriptions. But in fact the potential func-

tion, if written out in detail, would have an enormous
number of terms in it, due to the vast number of particles
in the whole reaction medium that contribute to the time
evolution. Specifying the initial and boundary conditions
must be included as part of the system description. Of
course many of the terms in the potential function and
therefore many of the initial-boundary conditions, can be
ignored or lumped into equivalent groupings. In general
the system’s description can be compressed to some
degree. But the degree of compression is never as much as
in the extreme case of a structurally programmable
machine. So many of the interactions are irrelevant in
programmable systems that there is no need to consult
physical equations at all. This is the whole point. The
description of a structurally nonprogrammable enzymatic
reaction system is much less compressible than the
description of a structurally programmable machine with a
comparable number of particles. The goal of nonpro-
grammable computing is to employ this difference in
complexity for useful computational functionality.

We must emphasize that a statistical description of a
physical system in terms of distribution functions (e.g., the
Maxwell-Boltzmann distribution) is not a compression in
the above sense. Taking averages eliminates the
complexity of particular cases. It would be impossible to
retrieve the complexity of even a single instance from a
statistical characterization. This is exemplified by the fact
that it is impossible to use a statistical distribution
function as a practical source of complexity in a computer
simulation.

5

Towards implementation

We have constructed a table top prototype along the above
lines that allows for convenient testing of reaction condi-
tions, including variant signal codings and output inter-
pretations (Fig. 3). Signals encoded by carrier substances
combine in a mixing chamber to form a chemical milieu.
The input pattern is represented in the milieu as a linear
combination of the substance concentrations present in
the signal reservoirs. The chemical milieu also contains
reactants. The concentration of these is independent of the
input signal patterns. The addition of an enzyme/co-
enzyme solution to the contents of the mixing chamber
initiates a chemical reaction catalyzed by the enzyme. The
fluid reaction phase is pumped in an air-filled tubing from
the mixing chamber to the detector. Product is formed

Fig. 3. Principal components of an enzyme-based pattern pro-
cessor



while the reaction phase is traveling and is monitored
when it reaches the detector. The measured product serves
as the output signal. The activity of the enzyme determines
the speed of the reaction and hence the amount of product
present at the time when the output is measured. The
interaction of the enzyme with the chemical milieu (which
contains the input signals) affects its conformational
dynamics. The conformational effect of the input signals
could be direct or indirect (i.e., through effects on the
medium). In either case the processing of the input signals
occurs through their nonlinear effect on the enzymatic
activity.

The actual setup is shown in Fig. 4. Two types of signal
solutions, representing 0 and 1, are contained in bottles
labeled 0 and 1 in the photograph. Each of the bottles is
connected to two valves and two syringes that form a
manual two-piston pump. The input signal pattern is
delivered to the mixing chamber by means of the syringes.
An additional single piston pump is used to inject the
enzyme solution into the mixing chamber. A peristaltic
pump is used to transport the reaction phase from the
mixing chamber to a spectrophotometer that serves as the
detector. The time for the reaction medium to reach the
detector, which determines the response time, is ten
seconds in the current setup. The spectrophotometer is
controlled by a digital computer which determines the
timing of the measurement and determines the output by
thresholding the amount of product measured. This cor-
responds to the interpretation map. Several valves allow
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Fig. 4. Table top implementation of the enzyme-based pattern
processor outlined in Fig. 3

the system to be flushed with water before the next pattern
is processed. The entire system could be miniaturized
using lab on a chip technology [15, 16]. The speed of the
process would be limited only by the turnover rate of the
enzyme and the detection limit, and could be far higher
than is possible in our current setup. However, at this
stage our interest is not miniaturization and speed but
finding biochemical media that perform interesting in-
formation processing functions.

We have used the enzyme malate dehydrogenase for
simple two bit pattern processing. The simplest linearly
inseparable task is the exclusive-or operation. This
requires that the enzyme respond in a nonmonotonic way
to the substance used as the signal carrier, i.e., it should be
activated more by an input pattern that contains one dose
of signal substance than by two doses. We used MgCl, as
the signal carrier. CaCl,, with slightly reduced output
signal strength, can be substituted for MgCl,. The pro-
cessing map mediated by malate dehydrogenase thus
serves as a transform that converts a linearly inseparable
problem to a linearly separable problem [17]. Thus the
final classification, done by the digital machine, can be
performed with a single threshold. We can note that the
exclusive-or problem (and linearly inseparable problems
generally) cannot be solved by a single layer perceptron
[18] or by any individual element, such as a transistor, that
responds to the average of its signal inputs. Whether
natural biological neurons exploit the recognition power of
enzymes to group different patterns of presynaptic input is
an important open question.

Malate dehydrogenase can be used to perform other
two-bit pattern classifications (e.g., OR, AND, NAND) by
changing the concentrations used for the signal coding and
changing the threshold level used for interpretation of the
output. Alternatively by using both CaCl, and MgCl, to
encode signals and changing their proportion it is possible
to shift between different logic operations without
changing the coding or interpretation. This shows that the
function performed by malatate dehyrogenase depends on
chemical context and that the function is therefore
situationally transformable.

6

Concluding remarks

Our prototype is as yet very simple. Obviously it does not
perform any operation that could not be performed by a
general purpose computer. The compression arguments
presented earlier clearly demonstrate the limits of pro-
grammable general purpose machines. Biological cells,
with thousands of interlinked enzyme types, undoubtedly
transcend these limitations. The inhomogeneity which is
the source of complexity here extends to enzyme structure.
The question is whether this can be exploited in devices
that expand on the complexity of the biochemical media
used in our prototype. Expansion here means going from
individual enzymes to networks of enzymes interacting
directly or through a common reaction medium.

The price of entering the space of possibilities lying
beyond what is formally specifiable is that prescriptive
programmability has to be abandoned. The complexity of
incompressible processing maps means that a complex
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physical-dynamical system is required for implementation.
Planned designs are infeasible. Evolutionary and adaptive
approaches are called for.

What might this domain of possibilities be like? The
main fact is that its characteristics are not formally
specifiable. The types of problems that could be usefully
addressed would therefore be quite different from those
addressed by programmable systems. Problems of the type
that hard artificial intelligence has stalled on presumably
belong to this class. The softness of natural language, as
opposed to the precision of computer languages, is per-
haps the best pointer. We envisage that high complexity
molecular devices could serve as co-processors that
complement the formally specifiable capabilities of
conventional machines.
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