Skip to main content
Log in

Nanowire-metal heterostructures for high performance MOSFETs

  • Mikroelektronik 10
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

In this work we report on the formation, of copper-germanide/germanium nanowire (NW) heterostructures with atomically sharp interfaces. The copper-germanide (Cu3Ge) formation process is enabled by a chemical reaction between metallic Cu pads and vapor-liquid-solid (VLS) grown Ge-NWs. The atomic scale aligned formation of the Cu3Ge segments is controlled by in situ SEM monitoring at 310 °C thereby enabling length control of the intrinsic Ge-NW down to a few nm. The single crystal Cu3Ge/Ge/Cu3Ge heterostructures were used to fabricate Ω-gated Ge-NW field effect transistors with Schottky Cu3Ge source/drain contacts. Temperature dependent I/V measurements revealed the metallic properties of the Cu3Ge contacts with a maximum current carrier density of 5 × 107 A/cm2. Prior to the gate deposition the intrinsic Ge-NW was modified with a focussed Ga+ ion beam. According to the thermoionic emission theory we determined an effective Schottky barrier height reduction from 218 meV to about 115 meV due to Ga+ implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrelet, C. J., Agarwal, R., Lieber, C. M. (2005): Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 5: 917

    Article  Google Scholar 

  • CaRIne Crystallography 3: 1

  • Chao, Y.-L., Xu, Y., Scholz, R., Woo, J. C. S. (2006): Characterization of copper germanide as contact metal for advanced MOSFETs. IEEE Electron Device Letters, 27: 7

    Article  Google Scholar 

  • Cui, Y., Duan, X., Hu, J., Lieber, C. M. J. (2000): Doping and electrical transport in silicon nanowires. Physical Chemistry B, 104: 5213

    Article  Google Scholar 

  • Cui, Y., Lieber, C. M. (2001): Functional nanoscale electronic devices assembled using silicon nanowire Building Blocks. Science, 291: 891

    Article  Google Scholar 

  • Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C. M. (2000): Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409: 66

    Article  Google Scholar 

  • Duan, X., Huang, Y., Lieber, C. M. (2002): Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires. Nano Letters, 2: 487

    Article  Google Scholar 

  • Gaudet, S., Detavernier, C., Kellock, A. J., Desjardins, P., Lavoie, C. J. (2006): Thin film reaction of transition metals with germanium. Vac Sci Technol A, 24: 474

    Article  Google Scholar 

  • Gradecak, S., Qian, F., Li, Y., Park, H., Lieber, C. M. (2005): GaN nanowire lasers with low lasing thresholds. Appllied Physics Letters, 87: 173111

    Article  Google Scholar 

  • Huang, Y.; Duan, X., Cui, J., Lauhon, J., Kim, K.-H., Lieber, C. M. (2001): Logic gates and computation from assembled nanowire building blocks. Science, 294: 1313

    Article  Google Scholar 

  • Krusin-Elbaum, L., Aboelfotoh, M. O. (1991): Unusually low resistivity of copper germanide thin films formed at low temperatures. Applied Physics Letters, 58: 1341

    Article  Google Scholar 

  • Lin, Y., Lu, W., Wu, W., Bai, J., Chen, L. J., Tu, K. N., Huang, Y. (2008): Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Letters, 8: 913

    Article  Google Scholar 

  • Lu, W., Xiang, J., Timko, B. P., Wu, Y., Lieber, C. M. (2005): One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proceedings of the National Acadamy of Science of the United States of America, 102: 10046

    Article  Google Scholar 

  • Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., Matsumoto, Y. (1991): Visible photoluminescence of germanium microcrystals embedded in silica glassy matrixes. Applied Physics Letters, 59: 3168

    Article  Google Scholar 

  • Moore, G. E. (1965): Cramming more components onto integrated circuits. Electronics, 38: 8

    Google Scholar 

  • Nam, C. Y., Tham, D., Fischer, J. E. (2005): Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. Nano Letters, 5: 2029

    Article  Google Scholar 

  • Persson, A. I., Pettersson, H., Trägardh, J., Samuelson, L. (2006): Infrared photodetectors in heterostructure nanowires. Nano Letters, 6: 229

    Article  Google Scholar 

  • Prince, M. B. (1953): Drift mobilities in semiconductors. I. Germanium. Bell Telephone Laboratories, 92

  • Song, Y., Schmitt, A. L., Jin, S. (2007): Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters, 7: 965

    Article  Google Scholar 

  • Sze, S. M. (1981): Physics of Semiconductor Devices. New York: Wiley

    Google Scholar 

  • Tawancy, H. M., Aboelfotoh, M. O. J. (1995): Effect of phase transitions in copper-germanium thin film alloys on their electrical resistivity. Materials Science, 30: 6053

    Article  Google Scholar 

  • Weber, W. M., Geelhaar, L., Graham, A. P., Unger, E., Duesberg, G. S., Liebau, M., Pamler, W., Che'ze, C., Riechert, H., Lugli, P., Kreupl, F. (2006): Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Letters, 6: 2660

    Article  Google Scholar 

  • Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C. M. (2004): Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 430: 61

    Article  Google Scholar 

  • Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C. M. (2006): Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 441: 489

    Article  Google Scholar 

  • Yamamoto, K., Kohno, H., Takeda, S., Ichikawa, S. (2006): Fabrication of iron silicide nanowires from nanowire templates. Applied Physics Letters, 89: 083107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Burchhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchhart, T., Lugstein, A., Zeiner, C. et al. Nanowire-metal heterostructures for high performance MOSFETs. Elektrotech. Inftech. 127, 171–175 (2010). https://doi.org/10.1007/s00502-010-0739-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-010-0739-9

Keywords

Navigation