Skip to main content
Log in

Aeronautical applications of GPS, Galileo & Co

Luftfahrtanwendungen von GPS, Galileo & Co

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Air transport has become an indispensable part of our modern civilisation. Today there are about 15,000 commercial aircrafts in operation and about 31,000 are envisaged for the year 2030. This growth is fuelled by surging passenger numbers—with recent predictions calling for 220 million airline passengers per year in 2029, while 2009 featured ‘only’ 80 millions. At the same time, 250,000 General Aviation (GA) aircraft provide for another substantial number of movements in the air; movements that need to be controlled and coordinated to ensure safety and to avoid congestions.

Guiding an airplane from A to B under all weather conditions requires Air Navigation Systems (ANS). ILS, NDBs, VORs are proven systems, however, they represent also expensive infrastructures and smaller airports cannot readily afford such systems, since they have difficulties offsetting the related CAPEX and OPEX with their low passenger numbers. GPS, GLONASS and Galileo provide a way out of that cost issue—provided that they can ensure a Safety-of-Life (SoL) service. Such a service provides a constant feedback loop to the GNSS user telling him whether the satellite navigation signal is reliable to enable safe flight navigation and landings. EGNOS, WAAS, GAGAN, MSAS and SDCM are all representatives of such Space-based Augmentation Systems (SBAS), providing a SoL-service to the various GNSS services. Developed in the last two decades, these systems have recently reached a high stage of maturity; consequently more and more airports adopt their approach and landing procedures to facilitate SBAS-supported Approaches with Vertical Guidance (APV).

Once fully established, satellite navigation will ultimately change the way we take-off, fly and land airplanes, by giving us the possibility to fly effectively from A to B, and adapting take-off and approach routes using 3D patterns, which respect both the terrain and noise/pollution concerns of neighbours. In the end both the pilots, the air traffic controllers and the people on the ground will be rewarded by higher safety, quicker flights due to shorter routings, improved congestion and reduced fuel consumption.

Zusammenfassung

Die Luftfahrt ist zu einem unverzichtbaren Teil unserer modernen Zivilisation geworden. Gegenwärtig sind ca.15.000 kommerzielle Flugzeuge in Betrieb, für das Jahr 2030 werden 31.000 erwartet. Dieser Anstieg wird durch die ansteigenden Passagierzahlen getrieben - so werden für das Jahr 2029 220 Millionen Fluglinienpassagiere erwartet, 2009 waren es „nur“ 80 Millionen. Gleichzeitig liefern 250.000 Flugzeuge der allgemeinen Luftfahrt einen substanziellen Beitrag zu den Flugbewegungen – Flugbewegungen, die kontrolliert und koordiniert werden müssen, um die Sicherheit zu gewährleisten und um Verkehrsprobleme zu vermeiden.

Die Führung eines Luftfahrzeuges von A nach B unter allen möglichen Wetterbedingungen erfordert Flugnavigationssysteme. ILS, NDB, VOR sind zwar ausgereifte Systeme, gleichzeitig aber sind sie auch sehr kostspielig, und kleinere Flughäfen können sich solche Systeme nicht leisten, da sie die hohen Kosten (CAPEX und OPEX) nicht gegen die geringen Passagierzahlen gegenrechnen können. GPS, GLONASS und Galileo bieten einen Ausweg aus dieser Kostenfalle – vorausgesetzt, diese Systeme können mit einem Safety-of-Life(SoL)-Service aufwarten. Ein SoL-Service beinhaltet eine konstant verfügbare Feedbackschleife zum GNSS-Benutzer. Dieses Feedback versichert dem Benutzer, dass das Satellitennavigationssignal zuverlässig ist und dass es daher damit möglich ist zu navigieren und zu landen. EGNOS, WAAS, GAGAN, MSAS und SDCM sind allesamt Vertreter von satellitenbasierten Ergänzungssystemen (engl. Space-based Augmentation Systems (SBAS)), welche SoL-Anwendungen mit den jeweiligen GNSS-Systemen (GPS, GLONASS, Galileo) ermöglichen. Da sie in den letzten beiden Dekaden entwickelt wurden, haben sie in letzter Zeit einen hohen Grad an technischer Reife erreicht. Konsequenterweise adaptieren immer mehr Flugplätze ihre Anflugs- und Landeverfahren, um SBAS-Anflüge mit vertikaler Flugführung (engl. Approach with Vertical Guidance (APV)) zu ermöglichen.

Sobald die Satellitennavigationssysteme sich voll etabliert haben, werden sie die Art und Weise, wie wir mit unseren Flugzeugen abheben, fliegen und landen in grundlegender Weise ändern. Dies wird sich v. a. dadurch zeigen, da sie uns einerseits die Möglichkeit bieten, in effektiver Weise von A nach B zu fliegen, und es andererseits ermöglichen, die Abflugs- und Anflugsrouten in dreidimensionaler Weise zu gestalten. Damit wiederum können sowohl die Geländebedingungen als auch die Lärm- und Luftverschmutzungsanforderungen der Anrainer besser respektiert werden. Im Endeffekt werden sowohl die Piloten, die Fluglotsen als auch die Anrainer mit einer gesteigerten Sicherheit, kürzeren Flügen durch eine effektivere Streckenführung, mit verbesserten Verkehrsverhältnissen und einem reduzierten Spritverbrauch belohnt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

Notes

  1. “Sailing is necessary, while survival is not!” According to Plutarch, Pompeius exclaimed these words when boarding a sailing ship whose crew was reluctant to leave the harbour because of a strong gale lingering outside on the open sea.

  2. An active aircraft is one that flies at least one hour during the year.

  3. The minima is a function of the obstacle assessment, with safety being derived from flying a stabilised approach on a continuous descent profile, having vertical path guidance.

Abbreviations

AIS:

Aeronautical Information Service

ANS:

Air Navigation Systems

ANSP:

Air Navigation Service Povider

AOPA:

Aircraft Owners and Pilots Association

APV:

Approaches with Vertical Guidance

CAGR:

Compound Annual Growth Rate

CAPEX:

Capital Expenditures

DA:

Decision Altitude

DC:

Deviation Correction

DME:

Distance Measurement Equipment

DNSS:

Defense Navigation Satellite System

EGNOS:

European Geostationary Navigation Overlay Service

ESSA:

European Satellite Service Provider

FEC:

Forward Error Correction

GA:

General Aviation

GAGAN:

GPS-aided Geo-augmented Navigation; GPS- and Geo-augmented Navigation

GBAS:

Ground-based Augmentation Systems

GLONASS:

Globalnaya Navigatsionnaya Sputnikovaya Sistema

GMS:

Ground Monitor Station

GNSS:

Global Navigation Satellite System

GPS:

Global Positioning System

IAP:

Instrument Approach Procedures

ICAO:

International Civil Aviation Organisation

IFR:

Instrument Flight Rules

ILS:

Instrument Landing System

LPV:

Localizer Performance with Vertical Guidance

MCC:

Master Control Centre

MCS:

Master Control Station

MDA:

Minimum Descent Altitude

MRS:

Monitor and Ranging Station

MSAS:

Multi-functional Satellite Augmentation System

MTSAT:

Multifunctional Transport Satellite

NDB:

Non-directional Beacon

NPA:

Non-precision Approaches

OPEX:

Operational Expenditures

PBN:

Performance-based Navigation

PNT:

Position, Navigation and Timing

QZSS:

Quasi-Zenith Satellite System

RIMS:

Ranging and Integrity Monitoring Station

RNP:

Required Navigation Performance

RNSS:

Regional Navigation Satellite System

SARP:

Standards and Recommended Practices

SBAS:

Space-based Augmentation Systems

SDCM:

System for Differential Corrections and Monitoring

SoL:

Safety of Life

TACAN:

Tactical Air Navigation

TEC:

Total Electron Content

VFR:

Visual Flight Rules

VOR:

VHF Omnidirectional Radio Range

WAAS:

Wide Area Augmentation System

References

  1. Parkinson, B.P. (2010): Highlight lecture: origins, surprises and future of GPS. In IAC 2010, 28/09/2010.

    Google Scholar 

  2. http://www2.ocgi.okstate.edu/gpstools/overview1.htm. Accessed in August 2013.

  3. GSA (2012): GNSS market report, issue 2, May 2012, p. 5. Available via www.gsa.europa.eu

  4. Frischauf, N., Koudelka, O., Wittig, M. (2012): Global in-flight Internet service—a proposal for a satellite mission. IAC-11-B.2.3.6, IAC-12, Naples, Italy

  5. FAA (2013): FAA aerospace forecast, fiscal years 2013–2033, p. 58. Available via www.faa.gov

  6. FAA (2013): Instrument approach procedure charts, Sect. 5-4-5, 2013-03-07

  7. Robinson, M. (2013): AOPA. Statement during the EGNOS Service Provision Workshop 2013, July 2013, Prague

  8. http://en.wikipedia.org/wiki/Wide_Area_Augmentation_System#cite_note-faa.gov-4. Accessed in September 2013.

  9. AOPA welcomes improved WAAS minima. http://www.aopa.org/News-and-Video/All-News/2006/July/3/AOPA-welcomes-improved-WAAS-minima. Accessed in September 2013.

  10. http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/faq/waas/. Accessed in September 2013.

  11. ESSP (2012): EGNOS service provision yearly report (April 2012–March 2013), edition 01-00, p. 20

  12. http://egnos-portal.gsa.europa.eu/discover-egnos/about-egnos/what-edas. Accessed in September 2013.

  13. http://en.wikipedia.org/wiki/Multi-Functional_Transport_Satellite. Accessed in September 2013

  14. http://www.navipedia.net/index.php/MSAS_Signal_Structure. Accessed in September 2013.

  15. http://en.wikipedia.org/wiki/Quasi-Zenith_Satellite_System. Accessed in September 2013

  16. http://navipedia.net/index.php/GPS_Signal_Plan. Accessed in September 2013

  17. Mucfin T. (2014): Report from the Munich summit. GPS World, 31/03/2014, http://gpsworld.com/report-from-the-munich-summit/. Accessed in April 2014

  18. http://www.navipedia.net/index.php/SDCM. Accessed in September 2013

  19. http://www.jetwhine.com/2012/01/vors-days-numbered-in-faa-proposal/. Accessed in September 2013

  20. Eleuteri Netjets, F. (2023): Presentation at the EGNOS service provision workshop, July 2013, Prague

Download references

Acknowledgements

This paper is based on a presentation given at the 64th International Astronautical Congress in Beijing, China, which the author had worked out together with the following persons: Manfred Wittig, SpaceTec Capital Partners, 80331 Munich, Germany; Otto Koudelka, Graz University of Technology, 8010 Graz, Austria; Charles Villié, EGNOS Programme, European Commission, 1040 Brussels, Belgium; Suresh V. Kibe, Consultant, SatCom and GNSS, India.

The author would like to thank these individuals for their invaluable contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Frischauf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frischauf, N. Aeronautical applications of GPS, Galileo & Co. Elektrotech. Inftech. 131, 161–177 (2014). https://doi.org/10.1007/s00502-014-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-014-0221-1

Keywords

Schlüsselwörter

Navigation