Skip to main content

Advertisement

Log in

Safe crash integration of inherently unsafe battery technologies

Sichere Crashintegration von inherent unsicheren Batterietechnologien

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Current electrified vehicles (battery-electric BEV and plug-in hybrid vehicles PHEV) suffer from two partially dependent characteristics: high gross weight and limited pure electric driving range. The design possibilities for these vehicles are limited by crash safety requirements, among other factors. The safe battery housing and the current requirement of no-significant deformation on the battery severely restrict options for placement within the vehicle. Structural stiffening measures add additional weight to the already quite heavy battery system. To better utilize the available integration space, deformation and failure characteristics of traction batteries need to be better understood. Today’s vehicle development process relies heavily on simulation tools, where finite-element (FE) methods are the established means for full-vehicle crash simulation. Therefore, to evaluate the structural performance capabilities and failure characteristics, the battery system must be adequately modeled and integrated with these methods. The development of new simulation tools that can be used in concert with the established ones are one priority of current research. The focus of this article is on integration aspects, especially in terms of failure prediction for the battery as a component. This article gives an overview on currently developed methods enabling the design of modern, structurally integrated battery concepts, while targeting crash safety demands and increased energy density for longer-range electric driving.

Zusammenfassung

Aktuell am Markt befindliche elektrifizierte Fahrzeuge leiden meist unter zwei von einander abhängigen Eigenschaften: hohes Fahrzeuggewicht und geringe rein elektrische Reichweite. Das liegt teilweise an den Anforderungen an die Crashsicherheit für Lithiumionenbatterien, die heute unter anderem durch die Vermeidung jeglicher Verformung des Batteriesystems im Crashlastfall erfüllt werden. Dadurch wird allerdings der limitierte Platz im Fahrzeug weiter eingeschränkt sowie das Fahrzeug durch zusätzliche Versteifungsmaßnahmen schwerer. Um zukünftige Elektrofahrzeuge mit geringerer Masse und höherer Reichweite zu entwickeln, ist es notwendig, das Verformungspotential und die Versagenscharakteristik von Batterien besser zu verstehen. Eine der Methoden, die in der Entwicklung von Fahrzeugen erfolgreich eingesetzt wird, ist die Crashsimulation von Gesamtfahrzeugmodellen nach dem Prinzip der Finiten-Elemente-Methode. Das Batteriesystem muss in diesen Simulationsprozess integriert werden, um sowohl das strukturelle Verhalten als auch die Abschätzung von initialem Versagen zu ermöglichen. Neue Methoden und Prozesse, die dieselbe Genauigkeit und Vorhersagegüte wie aktuell verwendete aufweisen, werden zurzeit erforscht und entwickelt. Dieser Artikel gibt einen Einblick in derzeitige Forschungsthemen. Mithilfe dieser Methoden wird es möglich, crashsichere, gewichts- und reichweitenoptimierte Batteriekonzepte zu entwickeln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. E.g. ECE regulations: Economic Commission for Europe, FMVSS: Federal Motor Vehicle Safety Standards).

  2. E.g. Euro/US/... NCAP: New Car Assessment Program, US IIHS: Injury Institute for Highway Safety.

  3. http://www.3ds.com.

  4. http://www.ls-dyna.com/.

  5. https://www.esi-group.com/.

  6. http://www.altairhyperworks.com.

  7. http://www.v2c2.at/en/products/icos/.

  8. http://www.mathworks.com/products/matlab/.

References

  1. Kramer, F. (2013): Integrale Sicherheit von Kraftfahrzeugen: Biomechanik – Simulation – Sicherheit im Entwicklungsprozess. ATZ/MTZ-Fachbuch (Vol. 1). Berlin: Springer.

    Google Scholar 

  2. Hollmotz, L. (2013): Safety of lithium ion batteries in vehicles—state of the art, risks and trends. In ESV conference proceeding 13-0395.

    Google Scholar 

  3. UN (2013): ECE R100, United Nations Std.

  4. Sandia National Laboratories (2005): FreedomCAR electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications. Sandia National Laboratories Std.

  5. UN (2002): UN recommendations on the transport of dangerous goods. United Nations Economic and Social Council (ECOSOC) Std.

  6. Golubkov, A. (2014): Thermal-runaway experiments on consumer li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv., 4, 3633–3642.

    Article  Google Scholar 

  7. Bathe, K. (2002): Finite-Elemente-Methoden. Berlin: Springer.

    Book  Google Scholar 

  8. von Mises, R. (1913): Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1913, 582–592.

    MATH  Google Scholar 

  9. Breitfuss, C. (2013): A ‘microscopic’ structural mechanics FE model of a lithium-ion pouch cell for quasi-static load cases. In SAE world congress & exhibition.

    Google Scholar 

  10. Wierzbicki, T., Sahraei, E. (2013): Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J. Power Sources, 241, 467–476.

    Article  Google Scholar 

  11. Thaler, A., Watzening, D. (Eds.) (2014): Automotive battery technology. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgements

VIRTUAL VEHICLE Research Center is funded within the COMET—Competence Centers for Excellent Technologies—programme by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry of Science, Research and Economy (BMWFW), the Austrian Research Promotion Agency (FFG), the province of Styria and the Styrian Business Promotion Agency (SFG). The COMET programme is administrated by FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Leitgeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitgeb, W., Thaler, A. Safe crash integration of inherently unsafe battery technologies. Elektrotech. Inftech. 132, 155–159 (2015). https://doi.org/10.1007/s00502-015-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-015-0298-1

Keywords

Schlüsselwörter

Navigation