Skip to main content
Log in

Evaluation of dynamic loading capability for optimal loading strategies of power transformers

  • CIGRE 2020
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Increasing needs for operational flexibility encourage concepts of using thermal operational limits of grid equipment instead of nominal limits, e.g., “dynamic line rating” for transmission lines. Using the available loading flexibility of complex and valuable power transformers requires a comprehensive approach. The thermal state and condition of a power transformer are among the most considerable impact factors for planning overload capability and lifetime management in the long term.

This paper investigates the dynamic loading capability of power transformers by using a dynamically calculated initial thermal state, set thermal limits and a dynamic thermal model as proposed in the IEC 60076-7:2017. Different thermal limits can be set depending on the operation state, e.g., long-term emergency or insulation-friendly. The suggested thermal limits also consider ageing and dielectric properties of insulation. Thermal limits of equal ageing velocity for different moisture content in solid insulation can be used to operate the transformer with respect to long-term asset management strategies.

Using the proposed reverse calculation of the thermal model’s steady-state loading limits, e.g., nameplate rating, the permissible short-term loading beyond the steady-state limits can be obtained for given timespan. The dependency of the steady-state loading limit from ambient temperature is approximated as a polynomial function with linear, quadratic and cubic components.

For a safe loading of the power transformer the steady-state limits of the subsystems have to be compared. The study shows that the hot-spot steady-state limits for normal and long-term emergency loading are lower than the top-oil steady-state limits.

Power transformers are usually subject to variations in the loading profile. The current thermal state becomes essential for the estimation of the thermal reserve and loading capability, especially when permissible overloading for a time of up to 60 minutes is scheduled. When determining the possible overload for a longer time span, the validity of the results is decreasing due to growing uncertainties. Moreover, the paper proposes a system to enhance the model by a moisture migration model for mineral-oil-immersed power transformers, decision-making under uncertainties assistance and transformer’s intelligent condition assessment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. The values are calculated in accordance to IEC 60076-7:2017 Annex A with the given moisture content 0%, 0,5%, 1,5% and 3,5% free from air, the values between the points are linear approximated.

  2. Thermal model with parameters \(\Delta \theta _{\mathrm{hr}}, \Delta \theta _{\mathrm{or}}, x, y, R\) are specified in IEC 60076-7:2017.

  3. The values are calculated based on proposed in IEC 60076-7:2017 TMs for steady state.

  4. The DTM is proposed in IEC 60076-7:2017.

References

  1. Dethlefs, T., Preisler, T., Renz, W. (2015): An architecture for a distributed smart grid registry system. In IECON 2015 - 41st annual conference of the IEEE (pp. 001234–001239). Yokohama: Industrial Electronics Society.

    Google Scholar 

  2. Kok, J. K., Scheepers, M. J. J., Kamphuis, I. G. (2010): Intelligence in electricity networks for embedding renewables and distributed generation. In R. Negenborn, Z. Lukszo, H. Hellendoorn (Eds.), Intelligent infrastructures. Intelligent systems, control and automation: science and engineering (Vol. 42). Dordrecht: Springer.

    Google Scholar 

  3. IEC International Electrotechnical Commission (2017): IEC60076-7 power transformers - part 7: loading guide for mineral-oil-immersed power transformers.

  4. ANSI American National Standard C57.91 (2011): IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators.

  5. Djamali, M. (2018): Thermal monitoring of power transformers. Göttingen: sierke Verlag.

    Google Scholar 

  6. Brochure 642 CIGRE (2011): Transformer reliability survey (pp. 1-57).

  7. Oommen, T. V., Lindgren, S. R. (2001): Bubble evolution from transformer overload. In 2001 IEEE/PES transmission and distribution conference and exposition. Developing new perspectives (Cat. No. 01CH37294) (Vol. 1). New York: IEEE Press.

    Google Scholar 

  8. Koch, M., Tenbohlen, S. (2011): Evolution of bubbles in oil–paper insulation influenced by material quality and ageing. IET Electr. Power Appl., 5(1), 168–174.

    Article  Google Scholar 

  9. Perkasa, C. Y., et al. (2015): Moisture-bubbling of vegetable oil impregnated paper at transformer overload temperatures. In 2015 IEEE 11th international conference on the properties and applications of dielectric materials, ICPADM. New York: IEEE Press.

    Google Scholar 

  10. Lupandina, I., Schrammel, M., Hofbauer, W., Viereck, K., Gawlik, W. (2018): Dynamische Belastbarkeit von Leistungstransformatoren mit der Auswirkung auf die Versorgungszuverlässigkeit. Poster: FNN-Fachtagung Schutz- und Leittechnik, Berlin, Germany, Feb. 2018.

  11. Brochure 659 CIGRE (2016): Transformer thermal modelling (pp. 1–197).

  12. Brochure 755 CIGRE (2019): Transformer bushings reliability (pp. 1–127).

  13. Viereck, K., Heger, M., Lupandina, I., Herold, E. (2020): Verbesserung der dynamischen Überlastfähigkeit von Netztransformatoren durch Netzwerkprognosedaten. In Stuttgarter Hochspannungssymposium.

    Google Scholar 

  14. Brochure 349 CIGRE (2008): Moisture equilibrium and moisture migration within transformer insulation systems (pp. 1–53).

  15. Tenbohlen, S., et al. (2011): Water saturation limits and moisture equilibrium curves of alternative insulation systems. https://doi.org/10.18419/opus-8875.

  16. Mukherjee, M., Chakravorti, S. (2014): Assessment of moisture diffusion distance in pressboard insulation within transformer using Fick’s law. In 2014 Eighteenth National Power Systems Conference (NPSC). New York: IEEE Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lupandina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paper submitted for the CIGRE Session 2020, SC-D1, September 2, 2020, online.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupandina, I., Gawlik, W., Schrammel, M. et al. Evaluation of dynamic loading capability for optimal loading strategies of power transformers. Elektrotech. Inftech. 137, 515–522 (2020). https://doi.org/10.1007/s00502-020-00845-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-020-00845-2

Keywords

Navigation