Skip to main content

Advertisement

Log in

Multivariable predictive control of a pressurized tank using neural networks

  • Original Article
  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

The behavior of a multivariable predictive control scheme based on neural networks applied to a model of a nonlinear multivariable real process, consisting of a pressurized tank is investigated in this paper. The neural scheme consists of three neural networks; the first is meant for the identification of plant parameters (identifier), the second one is for the prediction of future control errors (predictor) and the third one, based on the two previous, compute the control input to be applied to the plant (controller). The weights of the neural networks are updated on-line, using standard and dynamic backpropagation. The model of the nonlinear process is driven to an operation point and it is then controlled with the proposed neural control scheme, analyzing the maximum range over the neural control works properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Networ 1:4–27

    Article  Google Scholar 

  2. Narendra KS, Parthasarathy K (1991) Gradient methods for optimization of dynamical systems containing neural networks. IEEE Trans Neural Networ 2:252–262

    Article  Google Scholar 

  3. Hornik K, Stincombe M, White H (1990) Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networ 3:211–223

    Google Scholar 

  4. Draeger A, Engell S, Ranke H (1995) Model predictive control using neural networks. IEEE Contr Syst Mag 15(5):61–66

    Article  Google Scholar 

  5. Murray-Smith R, Sbarbaro D, Neumerkel D (1992) Neural networks for modeling and control of a nonlinear dynamic system. In: IEEE symposium on intelligent control, Glasgow, Scotland pp 122–127

  6. Hyaline S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey

    Google Scholar 

  7. Cutler C, Ramaker B (1980) Dynamic matrix control: a computer control algorithm”. In: Proceedings of the joint automatic control conference, San Francisco, CA Paper WP5-B

  8. Garcia CE, Morari M (1982) Internal model control. A unifying review and some new results. Ind Eng Chem Process Des Dev 21:308–323

    Article  Google Scholar 

  9. Peterson T, Hernandez E, Arkun Y, Schork FJ (1989) Nonlinear predictive control of a semi batch polymerization reactor by an extended DMC. In: Proceedings of the 1989 American Control Conference, Pittsburgh, PA, pp 1534–1539

  10. Brengel DD, Seider WD (1989) Multistep nonlinear predictive control. Ind Chem Eng Res 28:1812–1822

    Article  Google Scholar 

  11. Bordons AC, Camacho E (1998) A generalized predictive controller for a wide class of industrial processes. IEEE Trans Contr Syst Technol 6:372–387

    Article  Google Scholar 

  12. Thibaut J, Grandjean (1992) Neural networks in process control: a survey. In: Najim K, Dufour E (eds) Advanced control of chemical processes. IFAC Symposium Series No. 8 pp 251–260

  13. MacMurray J, Himmelblau D (1993) Identification of a packed distillation column for control via artificial neural networks. In: Proceedings of the 1993 American control conference, San Francisco, CA, pp 1455–1459

  14. Zamarreño JM, Vega P (1996) Neural predictive control: Application to a highly non linear process. In: Proceedings of the 13 IFAC world congress, San Francisco, USA Vol. C, Control Design I, 1996, pp 19–24

  15. Jazayeri-Rad H (2004) The nonlinear model-predictive control of a chemical plant using multiple neural networks. Neural Comput Appl 13(1):2–15

    Article  Google Scholar 

  16. Chu JZ, Tsai PF, Tsai WY et al. (2003) An experimental study of model predictive control based on artificial neural networks. Lect Notes Artif Intell 2773:1296–1302

    Google Scholar 

  17. Santos VML, Carvalho FR, de Souza MB (2000) Predictive control based on neural networks: an application to a fluid catalytic cracking industrial unit. Brazil J Chem Eng 17(4–7):897–905

    Google Scholar 

  18. Kovarova-Kovar K, Gehlen S, Kunze A et al. (2000) Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production. J Biotechnol 79(1):39–52

    Article  PubMed  Google Scholar 

  19. Galvan IM, Zaldivar JM (1998) Application of recurrent neural networks in batch reactors - Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature. Chem Eng Process 37(2):149–161

    Article  Google Scholar 

  20. Peligrad AA, Zhou E, Morton D et al. (2002) System identification and predictive control of laser marking of ceramic materials using artificial neural networks. In: Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 216(I2):181–190

  21. Liu GP, Daley S (1999) Output-model-based predictive control of unstable combustion systems using neural networks. Contr Eng Pract 7(5):91–600

    Google Scholar 

  22. Meghlaoui A, Bui RT, Thibault J et al. (1998) Predictive control of aluminum electrolytic cells using neural networks. Metall Mater Trans B-Process Metall Mater Process Sci 29(5):1007–1019

    Google Scholar 

  23. Chu JZ, Tsai PF, Tsai WY et al (2003) Multistep model predictive control based on artificial neural networks. Indust Eng Chem Res 42(21):5215–5228

    Article  Google Scholar 

  24. Tsai PF, Chu JZ, Jang SS et al (2003) Developing a robust model predictive control architecture through regional knowledge analysis of artificial neural networks. J Process Contr 13(5):423–435

    Article  Google Scholar 

  25. Wang LX, Wan F (2001) Structured neural networks for constrained model predictive control. Automatica 37(8):1235–1243

    Article  MathSciNet  Google Scholar 

  26. Piche S, Sayyar-Rodsari B, Johnson D et al (2000) Nonlinear model predictive control using neural networks. IEEE Contr Syst Mag 20(3):53–62

    Article  Google Scholar 

  27. Liu GP, Kadirkamanathan V, Billings SA (1998) Predictive control for non-linear systems using neural networks. Int J Contr 71(6):1119–1132

    Article  MathSciNet  Google Scholar 

  28. Rusnak A, Fikar M, Najim K et al (1996) Generalized predictive control based on neural networks. Neural Process Lett 4(2):107–112

    Article  Google Scholar 

  29. AM Suárez (1998) Nueva arquitectura de control predictivo para sistemas dinámicos nolineares usando redes neuronales. Tesis de Doctorado en Ciencias de la Ingeniería, Mención Automática. Depto. de Ing. Eléctrica, U. de Chile, Santiago, Chile

  30. Suárez AM, Duarte-Mermoud MA, Bassi DF (2005) A predictive control scheme based on neural networks. Kybernetes 34 (in press)

  31. Eggimann MA, Crisalle OD, Longchamp R (1992) A linear-programming predictive controller with variable horizon. Proceedings of the 1992 American Control Conference, Chicago, Il, pp 1568–1575

  32. Soto JM, Sbarbaro D (1998) Dynamically synthesized variable structure controller with integral modes. In: Proceedings of the American control conference, Pennsylvania, PA, pp 584–588

Download references

Acknowledgments

The research contained in this paper was supported by CONICYT under grants FONDECYT 1970351 and FONDECYT 1980361.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Duarte-Mermoud.

Appendix

Appendix

Table 1 The following are the numerical values of the model parameters used in all simulations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte-Mermoud, M.A., Suárez, A.M. & Bassi, D.F. Multivariable predictive control of a pressurized tank using neural networks. Neural Comput & Applic 15, 18–25 (2006). https://doi.org/10.1007/s00521-005-0003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-005-0003-0

Keywords