Skip to main content

Advertisement

Log in

A computational strategy exploiting genetic algorithms to recover color surface reflectance functions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Information about the spectral reflectance of a color surface is useful in many applications. Assuming that reflectance functions can be adequately approximated by a linear combination of a small number of basis functions, we address here the recovery of a surface reflectance function, given the tristimulus values under one or more illuminants. Basis functions presenting different characteristics and cardinalities are investigated, and genetic algorithms are employed to optimize the estimation. Our analysis of a variety of standard datasets provides information about the ability of each set of basis functions we used to model generic reflectance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen J (1964) Dependency of the spectral reflectance curves of the Munsell color chips. Psycon Sci 1:369–370

    Google Scholar 

  2. Marimont DH, Wandell BA (1992) Linear models of surface and illuminant spectra. J Opt Soc Am 9(11):1905–1913

    Google Scholar 

  3. Maloney LT (1986) Evaluation of linear models of surface spectral reflectance with a small number of parameters. J Opt Soc Am A 3:1673–1683

    Article  PubMed  Google Scholar 

  4. Jaaskelainen T, Parkkinen J, Toyooka S (1990) A vector-subspace model for color representation. J Opt Soc Am A 7:725–730

    Google Scholar 

  5. Sun Q, Fairchild MD (2001) Statistical characterization of spectral reflectances in spectral imaging of human portraiture. In: The Is&T/Sid 9th color imaging conference, November

  6. Sun Y, Fracchia FD, Calvert TW, Drew MS (1999) Deriving spectra from colors and rendering light interface. IEEE Comput Graph Appl

  7. Cheng F, Hsu W, Chen T (1998) Recovering colors in an image with chromatic illuminant. IEEE Trans Image Processing 7(11):1524–1533

    Article  Google Scholar 

  8. Schettini R (1994) Deriving spectral reflectance functions of computer-simulated object colors. Comput Graph Forum 13(4):211–217

    Article  Google Scholar 

  9. Ho J, Funt BV, Drew MS (1990) Separating a color signal into illumination and surface reflectance components: theory and applications. IEEE Trans Pattern Anal Mach Intell 12(10):966–973

    Article  Google Scholar 

  10. Mitchell M, Holland JH, Forrest S (1994) When will a genetic algorithm outperform hill climbing. In: Cowan JD, Tesaino G, Alspector J (eds) Advances in neural information processing systems, vol 6. Morgan Kaufmann, San Mateo, pp 51–58

  11. Mardle S, Pascoe S (1999) An overview of genetic algorithms for the solution of optimisation problems. Comp In Higher Education Economics Review, 13/1

  12. Galib: A C++ Library of genetic algorithm components, http://www.lancet.mit.edu/ga/

  13. Vrhel MJ, Gershon R, Iwan LS (1994) Measurement and analysis of object reflectance spectra. Color Res Appl 19(1):4–9

    Google Scholar 

  14. Sharma G, Trussel HJ (1997) Digital color imaging. IEEE Trans Image Processing 6(7):901–932

    Article  Google Scholar 

  15. Connah D, Westland S, Thomson MGA (2001) Recovering spectral information using digital camera systems. J Color Technol 117:309–312

    Article  Google Scholar 

  16. Drew MS, Funt BV (1992) Natural metamers. Comput Vis Graph Image Process Image Understand 56(2):139–151

    MATH  Google Scholar 

  17. Wandell BA (1987) The synthesis and analysis of color images. IEEE Trans Pattern Anal Mach Intell 9:2–13

    Article  Google Scholar 

  18. Schettini R, Barolo B (1996) Estimating reflectance functions from tristimulus values. Appl Signal Process 3:104–115

    Google Scholar 

  19. Sun Y, Fracchia FD, Drew MS (2000) A composite spectral model and its applications. In: The 8th color imaging conference, Scottsdale, pp 102–107

  20. Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  21. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading

    MATH  Google Scholar 

  22. Angelopoulou E, Molana R, Daniilidis K (2001) Multispectral skin color modeling. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society Press, pp 635–642

  23. Dupont D (2002) Study of the reconstruction of reflectance curves based on tristimulus values: comparison of methods of optimization. Color Res Appl 27(2):88–89

    Article  MathSciNet  Google Scholar 

  24. http://www.it.lut.fi/ip/research/color/database/database.html

  25. http://www.cs.sfu.ca/∼colour/data/colour_constancy_synthetic_test_data/index.html

  26. ISO/TR 16066:2003, Standard object colour spectra database for colour reproduction evaluation (SOCS)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Zuffi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schettini, R., Zuffi, S. A computational strategy exploiting genetic algorithms to recover color surface reflectance functions. Neural Comput & Applic 16, 69–79 (2007). https://doi.org/10.1007/s00521-006-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-006-0049-7

Keywords

Navigation