Skip to main content
Log in

A modular neural network applied to image transformation and mental images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents an original modular neural network architecture whose modules are multilayer perceptrons. The modules’ inputs are external inputs or hidden layers of other modules, thereby allowing them to be connected in a general manner. Based on this flexible architecture, networks with high numbers of inputs and outputs can be elaborated and properly trained. A suitable application is image transformation, i.e. the transformation of many input pixels into as many output pixels. Some architectural variations are presented; first the localization over a fraction of the network of a specific transformation’s training, and then the merging of two input images into a single output image. As a case study, we use the modular network to model mental images and their transformations (mental rotation, mental assemblage). It should eventually prove to be a valuable tool for image processing applications, such as super-resolution, or for the elaboration of complex cognitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Haykin S (1999) Neural networks, a comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  2. Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems, fundamentals through simulations. Wiley, New York

    Google Scholar 

  3. Cooper LA (1976) Demonstration of a mental analog of an external rotation. Percept Psychophys 19:296–302

    Google Scholar 

  4. Cooper LA, Shepard RN (1973) Chronometric studies of the rotation of mental images. In: Visual information processing. Academic, New York, pp 75–176

    Google Scholar 

  5. Shepard RN, Cooper LA (1982) Mental images and their transformations. MIT Press, Cambridge

    Google Scholar 

  6. Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  Google Scholar 

  7. Hashem S (1997) Optimal linear combinations of neural networks. Neural Netw 10:599–614

    Article  Google Scholar 

  8. Osherson DN, Weinstein S, Stoli M (1990) Modular learning. In: Schwartz EL (Ed) Computational neuroscience. MIT Press, Cambridge, pp 369–377

    Google Scholar 

  9. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87

    Article  Google Scholar 

  10. Jordan MI (1994) A statistical approach to decision tree modeling. In: Proc of the Sev Annu ACM Conf on Comput Learn Theo. ACM Press, New York

  11. Chen K, Chi H (1999) A modular neural network architecture for pattern classification based on different feature sets. Int J Neural Syst 9(6):563–581

    Article  Google Scholar 

  12. Dailey MN, Cottrell GW (1999) Organization of face and object recognition in modular neural network models. Neural Netw 12:1053–1073

    Article  Google Scholar 

  13. LeCun Y (1993) Efficient learning and second-order methods, a tutorial at NIPS 93, Denver

  14. Hinton GE (1989) Connectionist learning procedures. Artif Intell 40:185–234

    Article  Google Scholar 

  15. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones R (1999) Garbage collection, algorithms for automatic dynamic memory management. Wiley, New York

    Google Scholar 

  17. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  MATH  MathSciNet  Google Scholar 

  18. Fukushima K, Miyake S, Ito T (1983) Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans Syst Man Cybern 13(5):826–834

    Google Scholar 

  19. Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:119–130

    Article  Google Scholar 

  20. Grossberg S (2000) How hallucinations may arise from brain mechanisms of learning, attention, and volition. J Int Neuropsychol Soc 6:583–592

    Article  Google Scholar 

  21. Grossberg S (2003) How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex. Behav Cogn Neurosci Rev 2:47–76

    Article  Google Scholar 

  22. Hwang JN, Tseng YH (1993) 3D motion estimation using single perspective sparse range data via surface reconstruction neural networks. IEEE Int Conf Neural Netw 3:1696–1701

    Article  Google Scholar 

  23. Watt A (2000) 3D computer graphics. Addison-Wesley, Reading

    Google Scholar 

  24. Grossberg S (2001) Neural substrates of visual percepts, imagery, and hallucinations. Technical Report CAS/CNS-01-11

  25. Pylyshyn Z (2003) Return of the mental image: are there really pictures in the brain? Trends Cognit Sci 7(3):113–118

    Article  Google Scholar 

  26. Linsker R (1986) From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc Natl Acad Sci USA 83:7508–7512

    Article  Google Scholar 

  27. Linsker R (1988) Self-organization in a perceptual network. IEEE Comput 21(3):105–117

    Google Scholar 

  28. Perlovsky LI (2003) Integration of language and cognition at pre-conceptual level. KIMAS, Boston, pp 280–285

    Google Scholar 

  29. Perlovsky LI (2004) Integrating language and cognition. IEEE Connect Newsl IEEE Neural Netw Soc 2(2):8–13

    Google Scholar 

  30. Oh IS, Suen CY (2002) A class-modular feedforward neural network for handwriting recognition. Pattern Recognit 35:229–244

    Article  MATH  Google Scholar 

  31. Waibel A (1989) Modular construction of time-delay neural networks for speech recognition. Neural Comput 1:39–46

    Article  Google Scholar 

  32. Hackbarth H, Mantel J (1991) Modular connectionist structure for 100-word recognition. Int Joint Conf Neural Netw Seattle 2:845–849

    Article  Google Scholar 

  33. Auda G, Kamel M (1998) Modular neural network classifiers: a comparative study. J Intell Robot Syst 21:117–129

    Article  Google Scholar 

  34. Lin Z, Shum HY (2001) On the fundamental limits of reconstruction-based super-resolution algorithms. Proc IEEE Comput Vis Pattern Recognit 1(8–14):1171–1176

    Google Scholar 

  35. Baker S, Kanade T (2002) Limits on super-resolution and how to break them. IEEE Trans Pattern Anal Mach Intell 24(9):1167–1183

    Article  Google Scholar 

  36. Abraham WC, Robins A (2005) Memory retention—the synaptic stability versus plasticity dilemma. Trends Neurosci 28(2):73–78

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the reviewers and our colleagues Dr. Adnan Acan and Dr. Marifi Güler for their most valuable and inspiring comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Carcenac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carcenac, M. A modular neural network applied to image transformation and mental images. Neural Comput & Applic 17, 549–568 (2008). https://doi.org/10.1007/s00521-007-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-007-0152-4

Keywords

Navigation