Skip to main content
Log in

An online pruning strategy for supervised ARTMAP-based neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Identifying an appropriate architecture of an artificial neural network (ANN) for a given task is important because learning and generalisation of an ANN is affected by its structure. In this paper, an online pruning strategy is proposed to participate in the learning process of two constructive networks, i.e. fuzzy ARTMAP (FAM) and fuzzy ARTMAP with dynamic decay adjustment (FAMDDA), and the resulting hybrid networks are called FAM/FAMDDA with temporary nodes (i.e. FAM-T and FAMDDA-T, respectively). FAM-T and FAMDDA-T possess a capability of reducing the network complexity online by removing unrepresentative neurons. The performances of FAM-T and FAMDDA-T are evaluated and compared with those of FAM and FAMDDA using a total of 13 benchmark data sets. To demonstrate the applicability of FAM-T and FAMDDA-T, a real fault detection and diagnosis task in a power plant is tested. The results from both benchmark studies and real-world application show that FAMDDA-T and FAM-T are able to yield satisfactory classification performances, with the advantage of having parsimonious network structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haykin S (1994) Neural networks: a comprehensive foundation. McMillan, New York

    MATH  Google Scholar 

  2. Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern 31(6):902–918. doi:10.1109/3477.969494

    Article  Google Scholar 

  3. Carpenter GA, Grossberg S (1987) ART 2: self-organization of stable category recognition codes for analog input patterns. Appl Opt 26(23):4919–4930

    Article  Google Scholar 

  4. Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graph Image Process 37(1):54–115. doi:10.1016/S0734-189X(87)80014-2

    Article  Google Scholar 

  5. Carpenter GA, Grossberg S, Rosen DB (1991) Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw 4(6):759–771. doi:10.1016/0893-6080(91)90056-B

    Article  Google Scholar 

  6. Carpenter GA, Grossberg S, Markuzon N, Reynolds J, Rosen D (1992) Fuzzy ARTMAP: a neural network architecture for incremental learning of analog multidimensional maps. IEEE Trans Neural Netw 3(5):698–713. doi:10.1109/72.159059

    Article  Google Scholar 

  7. Carpenter GA, Milenova B, Noeske BW (1998) Distributed ARTMAP: a neural network for fast distributed supervised learning. Neural Netw 11(5):793–813. doi:10.1016/S0893-6080(98)00019-7

    Article  Google Scholar 

  8. Charalampidis D, Kasparis T, Georgiopoulos M (2001) Classification of noisy signals using fuzzy artmap neural networks. IEEE Trans Neural Netw 12(5):1023–1036. doi:10.1109/72.950132

    Article  Google Scholar 

  9. Vigdor B, Lerner B (2006) Accurate and fast off and online fuzzy artmap-based image classification with application to genetic abnormality diagnosis. IEEE Trans Neural Netw 17(5):1288–1300. doi:10.1109/TNN.2006.877532

    Article  Google Scholar 

  10. Palaniappan R, Paramesran R, Nishida S, Saiwaki N (2002) A new brain–computer interface design using fuzzy artmap. IEEE Trans Neural Syst Rehabil Eng 10(3):140–148. doi:10.1109/TNSRE.2002.802854

    Article  Google Scholar 

  11. Aggarwal RK, Xuan QY, Johns AT, Li F, Bennett A (1999) A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy artmap neural networks. IEEE Trans Neural Netw 10(5):1214–1221. doi:10.1109/72.788660

    Article  Google Scholar 

  12. Tan SC, Rao MVC, Lim CP (2006) On the reduction of complexity in the architecture of fuzzy artmap with dynamic decay adjustment. Neurocomputing 69(16-18):2456–2460. doi:10.1016/j.neucom.2006.01.027

    Article  Google Scholar 

  13. Huber K-P, Berthold MR (1995) Building precise classifiers with automatic rule extraction. Proc IEEE Int Conf Neural Netw 3:1263–1268

    Article  Google Scholar 

  14. Salmerón M, Ortega J, Puntonet CG, Prieto A (2001) Improved RAN sequential prediction using orthogonal techniques. Neurocomputing 41(1-4):153–172. doi:10.1016/S0925-2312(00)00363-5

    Article  MATH  Google Scholar 

  15. Rivals I, Personnaz L (2003) Neural-network construction and selection in nonlinear modeling. IEEE Trans Neural Netw 14(4):804–819. doi:10.1109/TNN.2003.811356

    Article  Google Scholar 

  16. Rojas I, Pomares H, Bernier JL, Ortega J, Pino B, Pelayo FJ et al (2002) Time series analysis using normalized pg-rbf network with regression weights. Neurocomputing 42(1-4):267–285. doi:10.1016/S0925-2312(01)00338-1

    Article  MATH  Google Scholar 

  17. http://markov.stats.ox.ac.uk/pub/PRNN

  18. Hettich S, Blake CL, Merz CJ (1998) UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine (http://www.ics.uci.edu/~mlearn/MLRepository.html)

  19. Lim CP, Harrison RF (1997) An incremental adaptive network for on-line supervised learning and probability estimation. Neural Netw 10(5):925–939. doi:10.1016/S0893-6080(96)00123-2

    Article  Google Scholar 

  20. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  MATH  MathSciNet  Google Scholar 

  21. Paetz J (2004) Reducing the number of neurons in radial basis function networks with dynamic decay adjustment. Neurocomputing 62:79–91. doi:10.1016/j.neucom.2003.12.004

    Article  Google Scholar 

  22. Ripley BD (1994) Neural networks and related methods for classification. J R Stat Soc B 56(3):409–456

    MATH  MathSciNet  Google Scholar 

  23. Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7(1):1–26. doi:10.1214/aos/1176344552

    Article  MATH  MathSciNet  Google Scholar 

  24. Marriott S, Harrison RF (1995) A modified fuzzy ARTMAP architecture for the approximation of noisy mappings. Neural Netw 8(4):619–641. doi:10.1016/0893-6080(94)00110-8

    Article  Google Scholar 

  25. Malaysia TNB (1999) System description and operating procedures. Prai Power Station Stage 3, vol 14

  26. Tan SC, Lim CP (2004) Application of an adaptive neural network with symbolic rule extraction to fault detection and diagnosis in a power generation plant. IEEE Trans Energ Convers 19(2):369–377. doi:10.1109/TEC.2003.821826

    Article  Google Scholar 

  27. Carpenter GA, Tan AH (1995) Rule extraction: from neural architecture to symbolic representation. Connect Sci 7(1):3–27. doi:10.1080/09540099508915655

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prai Power Station, Tenaga Nasional Generation Sdn. Bhd. for providing the database used in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing Chiang Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.C., Rao, M.V.C. & Lim, C.P. An online pruning strategy for supervised ARTMAP-based neural networks. Neural Comput & Applic 18, 387–395 (2009). https://doi.org/10.1007/s00521-008-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0191-5

Keywords

Navigation