Skip to main content
Log in

Detecting variabilities of ECG signals by Lyapunov exponents

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for automated diagnosis of electrocardiographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of variabilities of ECG signals. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the Physiobank database were classified. The computed Lyapunov exponents of the ECG signals were used as inputs of the MLPNNs trained with backpropagation, delta-bar-delta, extended delta-bar-delta, quick propagation, and Levenberg–Marquardt algorithms. The performances of the MLPNN classifiers were evaluated in terms of classification accuracies. The results confirmed that the MLPNN trained with the Levenberg–Marquardt algorithm has potential in detecting the variabilities of the ECG signals (total classification accuracy was 95.00%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saxena SC, Kumar V, Hamde ST (2002) Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int J Syst Sci 33(13):1073–1085. doi:10.1080/00207720210167159

    Article  MATH  Google Scholar 

  2. Foo SY, Stuart G, Harvey B, Meyer-Baese A (2002) Neural network-based EKG pattern recognition. Eng Appl Artif Intell 15:253–260. doi:10.1016/S0952-1976(02)00041-6

    Article  Google Scholar 

  3. Maglaveras N, Stamkopoulos T, Diamantaras K, Pappas C, Strintzis M (1998) ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform 52:191–208. doi:10.1016/S1386-5056(98)00138-5

    Article  Google Scholar 

  4. Sternickel K (2002) Automatic pattern recognition in ECG time series. Comput Methods Programs Biomed 68:109–115. doi:10.1016/S0169-2607(01)00168-7

    Article  Google Scholar 

  5. Kundu M, Nasipuri M, Basu DK (2000) Knowledge-based ECG interpretation: a critical review. Pattern Recognit 33:351–373. doi:10.1016/S0031-3203(99)00065-5

    Article  Google Scholar 

  6. Übeyli ED (2007) Implementing wavelet transform/mixture of experts network for analysis of ECG beats. Expert Syst 25(2):150–162

    Article  Google Scholar 

  7. Owis MI, Abou-Zied AH, Youssef A-BM, Kadah YM (2002) Study of features based on nonlinear dynamical modeling in ECG arrhytmia detection and classification. IEEE Trans Biomed Eng 49(7):733–736. doi:10.1109/TBME.2002.1010858

    Article  Google Scholar 

  8. Casaleggio A, Braiotta S (1997) Estimation of Lyapunov exponents of ECG time series—the influence of parameters. Chaos Solitons Fractals 8(10):1591–1599. doi:10.1016/S0960-0779(97)00040-4

    Article  Google Scholar 

  9. Silipo R, Deco G, Vergassola R, Bartsch H (1998) Dynamics extraction in multivariate biomedical time series. Biol Cybern 79:15–27. doi:10.1007/s004220050454

    Article  MATH  Google Scholar 

  10. Govindan RB, Narayanan K, Gopinathan MS (1998) On the evidence of deterministic chaos in ECG: surrogate and predictability analysis. Chaos 8(2):495–502. doi:10.1063/1.166330

    Article  MATH  Google Scholar 

  11. Fell J, Mann K, Röschke J, Gopinathan MS (2000) Nonlinear analysis of continuous ECG during sleep II. Dynamical measures. Biol Cybern 82:485–491. doi:10.1007/s004220050601

    Article  Google Scholar 

  12. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000). Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23): e215–e220 (Circulation Electronic Pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215. Accessed 13 June 2000)

  13. Haykin S, Li XB (1995) Detection of signals in chaos. Proc IEEE 83(1):95–122. doi:10.1109/5.362751

    Article  Google Scholar 

  14. Casdagli M (1989) Nonlinear prediction of chaotic time series. Physica D 35(3):335–356. doi:10.1016/0167-2789(89)90074-2

    Article  MATH  MathSciNet  Google Scholar 

  15. Eckmann J-P, Kamphorst SO, Ruelle D, Ciliberto S (1986) Liapunov exponents from time series. Phys Rev A 34(6):4971–4979. doi:10.1103/PhysRevA.34.4971

    Article  MathSciNet  Google Scholar 

  16. Abarbanel HDI, Brown R, Kennel MB (1991) Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data. Int J Mod Phys B 5(9):1347–1375. doi:10.1142/S021797929100064X

    Article  MATH  Google Scholar 

  17. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical systems. Rev Mod Phys 65(4):1331–1392. doi:10.1103/RevModPhys.65.1331

    Article  MathSciNet  Google Scholar 

  18. Benettin G, Galgani L, Giorgilli A, Strelcyn J-M (1980) Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method for computing all of them. Meccanica 15(1):9–30. doi:10.1007/BF02128236

    Article  MATH  Google Scholar 

  19. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716. doi:10.1103/PhysRevLett.45.712

    Article  Google Scholar 

  20. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317. doi:10.1016/0167-2789(85)90011-9

    Article  MATH  MathSciNet  Google Scholar 

  21. Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55(10):1082–1085. doi:10.1103/PhysRevLett.55.1082

    Article  MathSciNet  Google Scholar 

  22. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    MATH  Google Scholar 

  23. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31. doi:10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  24. Chaudhuri BB, Bhattacharya U (2000) Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing 34:11–27. doi:10.1016/S0925-2312(00)00305-2

    Article  MATH  Google Scholar 

  25. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. doi:10.1038/323533a0

    Article  Google Scholar 

  26. Jacobs RA (1988) Increased rate of convergence through learning rate adaptation. Neural Netw 1:295–307. doi:10.1016/0893-6080(88)90003-2

    Article  Google Scholar 

  27. Minai AA, Williams RD (1990). Back-propagation heuristics: a study of the extended delta-bar-delta algorithm. Proceedings of International Joint Conference on Neural Networks 1, 595–600, San Diego, California, 17–21 June 1990

  28. Fahlman SE (1988) An empirical study of learning speed in backpropagation networks. Computer Science Technical Report, CMU-CS-88-162, Carnegie Mellon University, Pittsburgh

  29. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993. doi:10.1109/72.329697

    Article  Google Scholar 

  30. Battiti R (1992) First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput 4:141–166. doi:10.1162/neco.1992.4.2.141

    Article  Google Scholar 

  31. Chan L-W (1990). Efficacy of different learning algorithms of the back propagation network. IEEE Region 10 Conference on Computer and Communication Systems, 1, 23–27, Hong Kong, 24–27 Sept 1990

  32. Sidani A, Sidani T (1994). A comprehensive study of the backpropagation algorithm and modifications. IEEE Conference Record, 80–84, Orlando, FL, USA, 29–31 March 1994

  33. Hannan JM, Bishop JM (1997). A comparison of fast training algorithms over two real problems. IEE Fifth International Conference on Artificial Neural Networks, Conference Publication No. 440, 1–6, Cambridge UK, 7–9 July 1997

  34. de Chazal P, Heneghan C, Sheridan E, Reilly R, O’Malley M (2003) Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Trans Biomed Eng 50(6):686–696

    Article  Google Scholar 

  35. Übeyli ED (2008) Usage of eigenvector methods in implementation of automated diagnostic systems for ECG beats. Digit Signal Process 18(1):33–48

    Article  Google Scholar 

  36. Osowski S, Hoai LT, Markiewicz T (2004) Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans Biomed Eng 51(4):582–589. doi:10.1109/TBME.2004.824138

    Article  Google Scholar 

  37. Acir N (2005) Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm. Neural Comput Appl 14(4):299–309. doi:10.1007/s00521-005-0466-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Derya Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übeyli, E.D. Detecting variabilities of ECG signals by Lyapunov exponents. Neural Comput & Applic 18, 653–662 (2009). https://doi.org/10.1007/s00521-008-0229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0229-8

Keywords

Navigation