Skip to main content

Advertisement

Log in

A new e-learning achievement evaluation model based on RBF-NN and similarity filter

  • WCCI2008
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

As Internet rises fast in recent decades, teaching and learning tools based on Internet technology are rapidly applied in education. Learning through Internet can make learners absorb knowledge without the limitations on learning time and distance. Therefore, in academy, e-learning is one of the popular learning assistant instruments. Recently, “student-centered” instruction has become one of the primary approaches in education, and the e-learning system, which can provide the learning environment of personalization and adaptability, is more and more popular. By using e-learning system, teachers can adjust the learning schedule instantly for learners according to their learning achievements, and build more adaptive learning environments. However, in some cases, bias assessments are given for student achievements under specific uncontrollable conditions (i.e. tiredness, preference). In dire need of overcoming this predicament, a new model based on radial basis function neural networks (RBF-NN) and similarity filter to evaluate learning achievements is proposed. The proposed model includes three phases to reduce bias assessments: (1) preprocess: select important features (attributes) to enhance classification performance by feature selection methods and utilize minimal entropy principle approach (MEPA) to fuzzify the quantitative data, (2) similarity filter: select linguistic values for each feature and delete inconsistent data by the similarity threshold (similarity filter) and (3) construct classification model and accuracy evaluation: build the proposed model based on RBF-NN and evaluate model performance. To verify the proposed model, a practical achievement dataset, collected from e-learning online examination system in a university of Taiwan, is used as experiment dataset, and the performance of the proposed model is compared with the listing models in this paper. From the empirical study, it is shown that the proposed model provided more proper achievement evaluations than the listing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rasmani KA, Shen Q (2006) Data-driven fuzzy rule generation and its application for student academic performance evaluation. Appl Intell 25:305–319. doi:10.1007/s10489-006-0109-9

    Article  Google Scholar 

  2. Wang JW, Cheng CH, Huang KC (2009) Fuzzy hierarchical TOPSIS for supplier selection. Appl Soft Comput 9(1):377–386. doi:10.1016/j.asoc.2008.04.014

    Article  MathSciNet  Google Scholar 

  3. Teoh HJ, Cheng CH, Chu HH, Chen JS (2008) Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets. Data Knowl Eng 67(1):103–117. doi:10.1016/j.datak.2008.06.002

    Article  Google Scholar 

  4. Cheng CH, Chen YS, Wu YL (2009) Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model. Expert Syst Appl 36(2):1826–1832. doi:10.1016/j.eswa.2007.12.041

    Article  Google Scholar 

  5. Biswas R (1995) An application of fuzzy sets in students’ evaluation. Fuzzy Sets Syst 74(2):187–194. doi:10.1016/0165-0114(95)00063-Q

    Article  MATH  Google Scholar 

  6. Echauz JR, Vachtsevanos GJ (1995) Fuzzy grading system. IEEE Trans Educ 38(2):158–165. doi:10.1109/13.387218

    Article  Google Scholar 

  7. Law CK (1996) Using fuzzy numbers in educational grading system. Fuzzy Sets Syst 83:311–323. doi:10.1016/0165-0114(95)00298-7

    Article  Google Scholar 

  8. Cheng CH, Yang KL (1998) Using fuzzy sets in education grading system. J Chin Fuzzy Syst Assoc 4(2):81–89

    Google Scholar 

  9. Chen SM, Lee CH (1999) New methods for students’ evaluating using fuzzy sets. Fuzzy Sets Syst 104(2):209–218. doi:10.1016/S0165-0114(97)00208-X

    Article  MathSciNet  Google Scholar 

  10. Ma J, Zhou D (2000) Fuzzy set approach to the assessment of student-centered learning. IEEE Trans Educ 43(2):237–241. doi:10.1109/13.848079

    Article  Google Scholar 

  11. Weon S, Kim J (2001) Learning achievement evaluation strategy using fuzzy membership function. In: Proceedings of the 31st ASEE/IEEE frontiers in education conference, Reno, NV, vol 1, pp 19–24

  12. Bai SM, Chen SM (2008) Evaluating students’ learning achievement using fuzzy membership functions and fuzzy rules. Expert Syst Appl 34:399–410. doi:10.1016/j.eswa.2006.09.010

    Article  Google Scholar 

  13. Christensen R (1980) Entropy minimax sourcebook, general description. Entropy Limited, Lincoln, MA

    Google Scholar 

  14. Moody J, Darken CJ (1989) Fast learning in networks of locally tuned processing units. Neural Comput 1:281–294. doi:10.1162/neco.1989.1.2.281

    Article  Google Scholar 

  15. Bishop CM (1995) Neural network for pattern recognition. Oxford University Press, New York

    Google Scholar 

  16. Guillén A, Pomares H, Rojas I, González J, Herrera LJ, Rojas F, Valenzuela O (2008) Studying possibility in a clustering algorithm for RBFNN design for function approximation. Neural Comput Appl 17:75–89. doi:10.1007/s00521-007-0134-6

    Google Scholar 

  17. Haddadnia J, Faez K, Ahmadi M (2003) A fuzzy hybrid learning algorithm for radial basis function neural network with application in human face recognition. Pattern Recognit 36:1187–1202. doi:10.1016/S0031-3203(02)00231-5

    Article  MATH  Google Scholar 

  18. Lee SJ, Hou CL (2002) An ART-based construction of RBF networks. IEEE Trans Neural Netw 13:1308–1321. doi:10.1109/TNN.2002.804308

    Article  Google Scholar 

  19. Sharma AK, Sharma RK, Kasana HS (2006) Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows. Neural Comput Appl 15:359–365. doi:10.1007/s00521-006-0037-y

    Article  Google Scholar 

  20. Zhang D, Deng LF, Cai KY, So A (2005) Fuzzy nonlinear regression with fuzzified radial basis function network. IEEE Trans Fuzzy Syst 13(6):742–760. doi:10.1109/TFUZZ.2005.859307

    Article  Google Scholar 

  21. Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, New York

    Google Scholar 

  22. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann Publishers, USA

    MATH  Google Scholar 

  23. Hall MA (1998) Correlation-based Feature Subset Selection for Machine Learning. PhD thesis, University of Waikato

  24. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of the European conference on machine learning, pp 171–182

  25. Liu H, Setiono R (1996) A probabilistic approach to feature selection—a filter solution. In: Proceedings of the 13th international conference on machine learning, pp 319–327

  26. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  27. Holte RC (1993) Very simple classification rules perform well on most commonly used datasets. Mach Learn 11(1):63–90. doi:10.1023/A:1022631118932

    Article  MathSciNet  MATH  Google Scholar 

  28. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Sleeman D, Edwards P (eds) Proceedings of the international conference on machine learning, Morgan Kaufmann, San Mateo, pp 249–256

  29. Press WH, Flannery BP, Teukolski SA, Vetterling WT (1998) Numerical recipes in C. Cambridge University Press, Cambridge

  30. Kim CJ, Russell BD (1993) Automatic generation of membership function and fuzzy rule using inductive reasoning. In: Proceedings of the industrial fuzzy control and intelligent systems, Houston

  31. Yager R, Filev D (1994) Template-based fuzzy system modeling. Intell Fuzzy Syst 2:39–54

    Google Scholar 

  32. Ross TJ (2004) Fuzzy logic with engineering applications. Wiley, USA

    MATH  Google Scholar 

  33. Zadeh LA (1965) Fuzzy sets. Inf Contr 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan Y, Shaw MJ (1995) Induction of fuzzy decision trees. Fuzzy Sets Syst 69(2):125–139. doi:10.1016/0165-0114(94)00229-Z

    Article  MathSciNet  Google Scholar 

  35. Chen SM, Lee SH, Lee CH (2001) A new method for generating fuzzy rules from numerical data for handling classification problems. Appl Artif Intell 15(6):645–664

    Article  Google Scholar 

  36. Kosko B (1986) Fuzzy entropy and conditioning. Inf Sci 40(2):165–174. doi:10.1016/0020-0255(86)90006-X

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu H, Hussain F, Tan C, Dash M (2002) Discretization: an enabling technique. Data Min Knowl Discov 6(4):393–423. doi:10.1023/A:1016304305535

    Article  MathSciNet  Google Scholar 

  38. Pawlak Z (1982) Rough Sets. Inf J Comput Inf Sci 11(5):341–356. doi:10.1007/BF01001956

    Article  MathSciNet  MATH  Google Scholar 

  39. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  40. Murphy KP (2002) Bayes Net ToolBox, Technical Report, MIT Artificial Intelligence Laboratory, http://www.ai.mit.edu/~murphyk/

  41. Cortes C, Vapnik V (1995) Support vector network. Mach Learn 20:273–297

    MATH  Google Scholar 

  42. Polkowski L, Tsumoto S, Lin T (2000) Rough set methods and applications. Physica-Verlag, Heidelberg, pp 49–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsue Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CH., Chen, TL., Wei, LY. et al. A new e-learning achievement evaluation model based on RBF-NN and similarity filter. Neural Comput & Applic 20, 659–669 (2011). https://doi.org/10.1007/s00521-009-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0280-0

Keywords

Navigation