Skip to main content

Advertisement

Log in

An improved dynamic structure-based neural networks determination approaches to simulation optimization problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Simulation optimization studies the problem of optimizing simulation-based objectives. This field has a strong history in engineering but often suffers from several difficulties including being time-consuming and NP-hardness. Simulation optimization is a new and hot topic in the field of system simulation and operational research. This paper presents a hybrid approach that combines Evolutionary Algorithms with neural networks (NNs) for solving simulation optimization problems. In this hybrid approach, we use NNs to replace the known simulation model for evaluating subsequent iterative solutions. Further, we apply the dynamic structure-based neural networks to learn and replace the known simulation model. The determination of dynamic structure-based neural networks is the kernel of this paper. The final experimental results demonstrated that the proposed approach can find optimal or close-to-optimal solutions and is superior to other recent algorithms in simulation optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.ics.uci.edu/~mlearn/MLRepository.html.

References

  1. Pierreval H, Paris JL (2000) Distributed evolutionary algorithms for simulation optimization. IEEE Trans Syst Man Cybern A Syst Hum 30(1):15–24

    Article  Google Scholar 

  2. Kleijnen JPC (1993) Simulation and optimization production planning: a case study. Decis Support Syst 9(3):269–280

    Article  Google Scholar 

  3. Rosenblatt MJ, Roll Y, Zyse V (1993) A combined optimization and simulation approach for designing automated storage/retrieval systems. IEE Trans 25(1):40–50

    Article  Google Scholar 

  4. Shank JS, Tadikamalla PR (1993) Output maximization of a CIM system: simulation and statistical approach. Int J Prod Res 31(1):19–41

    Article  Google Scholar 

  5. Brennan RW, Roger P (1995) Stochastic optimization applied to a manufacturing system operation problem. In: Winter simulation conference proceedings, IEEE Press, Arlington, pp 857–864

  6. Hindi KS, Yang H, Fleszar K (2002) An evolutionary algorithm for resource-constrained project scheduling. IEEE Trans Evol Comput 6(5):512–518

    Article  Google Scholar 

  7. Tsai HK, Yang JM, Tsai YF, Kao CY (2004) An evolutionary algorithm for large traveling salesman problems. IEEE Trans Syst Man Cybern B Cybern 34(4):1718–1729

    Article  Google Scholar 

  8. Leung YW, Wang YP (2001) An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans Evol Comput 5(1):41–53

    Article  Google Scholar 

  9. Ding HW, Benyoucef L, Xie XL (2005) A simulation optimization methodology for supplier selection problem. Int J Comput Integr Manuf 18(2–3):210–224

    Article  Google Scholar 

  10. Fu MC, Glover FW, April J (2005) Simulation optimization: a review, new developments, and applications. In: The winter simulation conference proceedings, IEEE Press, Orlando, pp 83–95

  11. Butler JC, Morrice DJ, Mullarkey PW (2001) A multiple attribute utility theory approach to ranking and selection. Manag Sci 47(6):800–816

    Article  Google Scholar 

  12. Malone GJ, Kim SH, Goldsman D, Batur D (2005) Performance of variance updating ranking and selection procedures. In: The winter simulation conference proceedings, IEEE Press, Orlando, pp 825–832

  13. Branke J, Chick SE, Schmidt C (2005) New developments in ranking and selection: an empirical comparison of the three main approaches. In: The winter simulation conference proceedings, IEEE Press, Orlando, pp 708–717

  14. Ho YC, Sreenivas R, Vakili P (1992) Ordinal optimization of DEDS. Discret Event Dyn Syst Theory Appl 2(2):61–88

    Article  MATH  Google Scholar 

  15. Ho YC, Cassandras CG, Chen CH, Dai LY (2000) Ordinal optimization and simulation. J Oper Res Soc 51(4):490–500

    MATH  Google Scholar 

  16. Kim SH, Nelson BL (2006) Selecting the best system. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science, vol 1, handbooks in operations research and management science: simulation, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  17. Chick SE, Inoue K (2001) New two-stage and sequential procedures for selecting the best simulated system. Oper Res 49(5):732–743

    Article  Google Scholar 

  18. Chick SE, Inoue K (2001) New procedures to select the best simulated system using common random numbers. Manag Sci 47(8):1133–1149

    Article  Google Scholar 

  19. Olafsson S (1999) Iterative ranking-and-selection for large-scale optimization. In: The winter simulation conference proceedings, IEEE Press, Phoenix, pp 479–485

  20. Trailovic L, Pao LY (2004) Computing budget allocation for efficient ranking and selection of variances with application to target tracking algorithms. IEEE Trans Autom Control 49(1):58–67

    Article  MathSciNet  Google Scholar 

  21. Boesel J, Nelson BL, Kim S (2003) Using ranking and selection to ‘clean up’ after simulation optimization. Oper Res 51(5):814–825

    Article  MATH  MathSciNet  Google Scholar 

  22. Swisher JR, Jacobson SH, Sheldon H, Yucesan E (2003) Discrete-event simulation optimization using ranking, selection, and multiple comparison procedures: a survey. ACM Trans Model Comput Simul 13(2):1049–3301

    Article  Google Scholar 

  23. Jivotovski G (2000) Gradient based heuristic algorithm and its application to discrete optimization of bar structures. Struct Multidiscip Optim 19(3):237–248

    Article  Google Scholar 

  24. Soliman EA, Bakr MH, Nikolova NK (2005) Accelerated gradient-based optimization of planar circuits. IEEE Trans Antennas Propag 53(2):880–883

    Article  Google Scholar 

  25. Liao LZ, Qi LQ, Tam HW (2005) A gradient-based continuous method for large-scale optimization problems. J Glob Optim 31(2):271–286

    Article  MATH  MathSciNet  Google Scholar 

  26. Dwight RP, Brezillon J (2006) Effect of approximations of the discrete adjoint on gradient-based optimization. AIAA J 44(12):3022–3031

    Article  Google Scholar 

  27. Fu MC (2006) Gradient estimation. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science, vol 1, handbooks in operations research and management science: simulation, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  28. Mahnken R, Johansson M, Runesson K (1998) Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm. Eng Comput 15(6–7):925–954

    MATH  Google Scholar 

  29. Norgren M, He S (1999) Gradient-based optimization approach to the inverse problem for multi-layered structures sailing. Int J Appl Electromagn Mech 10(4):315–335

    Google Scholar 

  30. Kegl M, Butinar BJ, Kegl B (2002) An efficient gradient-based optimization algorithm for mechanical systems. Commun Numer Methods Eng 18(5):363–371

    Article  MATH  MathSciNet  Google Scholar 

  31. Wilson E, Rock SM (2002) Gradient-based parameter optimization for systems containing discrete-valued functions. Int J Robust Nonlinear Control 12(11):1009–1028

    Article  MATH  Google Scholar 

  32. Bhatnagar S (2005) Adaptive multivariate three-timescale stochastic approximation algorithms for simulation based optimization. ACM Trans Model Comput Simul 15(1):74–107

    Article  Google Scholar 

  33. Bhatnagar S, Kowshik HJ (2005) A discrete parameter stochastic approximation algorithm for simulation optimization. Simulation 81(11):757–772

    Article  Google Scholar 

  34. Yin G, Krishnamurthy V, Ion C (2004) Regime switching stochastic approximation algorithms with application to adaptive discrete stochastic optimization. SIAM J Optim 14(4):1187–1215

    Article  MATH  MathSciNet  Google Scholar 

  35. Ravi R, Sinha A (2006) Hedging uncertainty: approximation algorithms for stochastic optimization problems. Math Program 108(1):97–114

    Article  MATH  MathSciNet  Google Scholar 

  36. Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Oper Res 54(1):115–129

    Article  MATH  Google Scholar 

  37. Sadegn P, Spall JC (1998) Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Autom Control 43(10):1480–1484

    Article  Google Scholar 

  38. Kleinman NL, Nathan L, Spall JC, Naiman DQ (1999) Simulation-based optimization with stochastic approximation using common random numbers. Manag Sci 45(11):1570–1578

    Article  MATH  Google Scholar 

  39. Hutchison DW, Hill SD (2000) Simulation optimization of airline delay using simultaneous perturbation stochastic approximation. In: The IEEE annual simulation symposium proceedings, IEEE Press, Washington DC, pp 253–258

  40. He Y, Fu MC, Marcus SI (2003) Convergence of simultaneous perturbation stochastic approximation for nondifferentiable optimization. IEEE Trans Autom Control 48(8):1459–1463

    Article  MathSciNet  Google Scholar 

  41. Andradottir S (2006) An overview of simulation optimization via random search. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science, vol 1, handbooks in operations research and management science: simulation, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  42. Swisher JR, Hyden PD, Jacobson SH, Schruben LW (2004) A survey of recent advances in discrete input parameter discrete-event simulation optimization. IIE Trans 36(6):591–600

    Article  Google Scholar 

  43. Myers RH, Montgomery DC, Geoffrey VG et al (2004) Response surface methodology: a retrospective and literature survey. J Qual Technol 36(1):53–78

    Google Scholar 

  44. Yeun YS, Yang YS, Ruy WS, Kim BJ (2005) Polynomial genetic programming for response surface modeling part 1: a methodology. Struct Multidiscip Optim 29(1):19–34

    Article  MathSciNet  Google Scholar 

  45. Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Comput Struct 82(2–3):241–256

    Article  Google Scholar 

  46. Barton R (2006) Response surface methodology. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science, vol 1, handbooks in operations research and management science: simulation, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  47. Hunt FY (2005) Sample path optimality for a Markov optimization problem. Stoch Process Appl 115(5):769–779

    Article  MATH  Google Scholar 

  48. Palmer K, Asiabanpour B, Khoshnevis B (2006) Development of a rapid prototyping system using response surface methodology. Qual Reliab Eng Int 22(8):919–937

    Article  Google Scholar 

  49. Kemper P, Muller D, Thummler A (2006) Combining response surface methodology with numerical methods for optimization of Markovian models. IEEE Trans Dependable Secur Comput 3(3):259–269

    Article  Google Scholar 

  50. Vadde KK, Syrotiuk VR, Montgomery DC (2006) Optimizing protocol interaction using response surface methodology. IEEE Trans Mob Comput 5(6):627–638

    Article  Google Scholar 

  51. Beers V, Kleijnen JPC (2003) Kriging for interpolation in random simulation. J Oper Res Soc 54(3):255–262

    Article  MATH  Google Scholar 

  52. Robinson SM (1996) Analysis of sample-path optimization. Math Oper Res 21(3):513–528

    Article  MATH  MathSciNet  Google Scholar 

  53. Plambeck EL, Fu B-R, Robinson SM, Suri R (1996) Sample-path optimization of convex stochastic performance functions. Math Program (Series B) 75(2):137–176

    Article  MathSciNet  Google Scholar 

  54. Meng FW, Xu HF (2006) Exponential convergence of sample average approximation methods for a class of stochastic mathematical programs with complementarity constraints. J Comput Math 24(6):733–748

    MATH  MathSciNet  Google Scholar 

  55. Wei J, Realff MJ (2004) Sample average approximation methods for stochastic MINLPs. Comput Chem Eng 28(3):333–346

    Article  Google Scholar 

  56. Blomvall J, Shapiro A (2007) Solving multistage asset investment problems by the sample average approximation method. Math Program 108(2–3):571–595

    MathSciNet  Google Scholar 

  57. Verweij B, Ahmed S, Kleywegt AJ et al (2003) The sample average approximation method applied to stochastic routing problems: a computational study. Comput Optim Appl 24(2–3):289–333

    Article  MATH  MathSciNet  Google Scholar 

  58. Royset JO, Polak E (2004) Reliability-based optimal design using sample average approximations. Probab Eng Mech 19(4):331–343

    Article  Google Scholar 

  59. Lasserre JB (1999) Sample-path average optimality for Markov control processes. IEEE Trans Autom Control 44(10):1966–1971

    Article  MATH  MathSciNet  Google Scholar 

  60. Charon I, Hudry O (2001) A generalization of some metaheuristics. Eur J Oper Res 135(1):86–101

    Article  MATH  MathSciNet  Google Scholar 

  61. Yagiura M, Ibaraki T (1996) Metaheuristics as robust and simple optimization tools. In: The international conference of evolutionary computation proceedings, IEEE Press, Nagoya, pp 541–546

  62. Fortemps P, Ost C, Pirlot M et al (1996) Using metaheuristics for solving a production scheduling problem in a chemical firm, a case study. Int J Prod Econ 46–47(1):13–26

    Article  Google Scholar 

  63. Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564

    Article  Google Scholar 

  64. Fanni A, Manunza A, Marchesi M, Pilo F (1999) Tabu search metaheuristics for electromagnetic problems optimization in continuous domains. IEEE Trans Magn 35(3):1694–1697

    Article  Google Scholar 

  65. Sousa SHG, Maschio C, Schiozer DJ (2006) Scatter search metaheuristic applied to the history-matching problem. In: The SPE annual technical conference and exhibition proceedings, vol 5, IEEE Press, San Antonio, pp 3544–3553

  66. Greistorfer P (2003) A tabu scatter search metaheuristic for the arc routing problem. Comput Ind Eng 44(2):249–266

    Article  Google Scholar 

  67. Olaffson S (2006) Metaheuristics. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science, vol 1, handbooks in operations research and management science: simulation, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  68. Shi L, Olafsson S (2000) Nested partitioned method for global optimization. Oper Res 48(3):390–407

    Article  MATH  MathSciNet  Google Scholar 

  69. Tekin E, Sabuncuoglu I (2004) Simulation optimization: a comprehensive review on theory and applications. IIE Trans (Institute of Industrial Engineers) 36(11):1067–1081

    Google Scholar 

  70. Zhao JH, Dao TM, Liu ZH (2005) Optimization of mechanical systems reliability using ant colony based simulation approach. In: The IASTED international conference on modelling and simulation proceedings, Acta Press, Cancun, pp 182–187

  71. Jalali MR, Afshar A, Marino MA (2005) Ant colony optimization algorithm (ACO), a new heuristic approach for engineering optimization. WSEAS Trans Inf Sci Appl 2(5):606–610

    Google Scholar 

  72. Dorigo M, Stutzle T (2004) Ant colony optimization, vol 1, 1st edn. MIT Press, Cambridge

    MATH  Google Scholar 

  73. Larranaga P, Lozano JA (2001) Estimation of distribution algorithms: a new tool for evolutionary computation, vol 1, 1st edn. Kluwer, Boston

    Google Scholar 

  74. Zhang QF, Sun JY, Tsang E, Ford J (2004) Hybrid estimation of distribution algorithm for global optimization. Eng Comput 21(1):91–107

    Article  Google Scholar 

  75. Simionescu PA, Beale DG, Dozier GV (2004) Constrained optimization problem solving using estimation of distribution algorithms. In: The congress on evolutionary computation proceedings, vol 1, IEEE Press, Portland, pp 296–302

  76. D’Acquisto G, Naldi M (2005) Cross-entropy-based adaptive optimization of simulation parameters for Markovian-driven service systems. Simul Model Pract Theory 13(7):619–645

    Article  Google Scholar 

  77. Boer P-TD, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Ann Oper Res 134(1):19–67

    Article  MATH  MathSciNet  Google Scholar 

  78. Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning, vol 1, 1st edn. Springer, New York

    MATH  Google Scholar 

  79. Hu J, Fu MC, Marcus SI (2005) A model reference adaptive search algorithm for global optimization. The Institute for Systems Research, Maryland, Technical Research Report, TR 2005-81, March 2005

  80. Hu JQ, Fu MC, Marcus SI (2005) Stochastic optimization using model reference adaptive search. In: The winter simulation conference proceedings, IEEE Press, Orlando, pp 811–818

  81. Jones MH, White KP (2004) Stochastic approximation with simulated annealing as an approach to global discrete-event simulation optimization. In: The winter simulation conference proceedings, IEEE Press, Washington DC, pp 500–507

  82. Buchholz P, Thummler A (2005) Enhancing evolutionary algorithms with statistical selection procedures for simulation optimization. In: The winter simulation conference proceedings, IEEE Press, Orlando, pp 842–852

  83. Sriver TA, Chrissis JW (2004) Combined pattern search and ranking and selection for simulation optimization. In: The winter simulation conference proceedings, IEEE Press, Washington DC, pp 645–653

  84. Hedlund HE, Mollaghasemi M (2001) A genetic algorithm and an indifference-zone ranking and selection framework for simulation optimization. In: The winter simulation conference proceedings, IEEE Press, Arlington, pp 417–421

  85. Li QY, Gong YB, Yang DG, Liang JS (2003) Study on simulation-based optimization for flip chip package parameters by using RSM analysis and ant algorithm. In: The fifth international conference on electronic packaging technology proceedings, IEEE Press, Shanghai, pp 86–90

  86. Persson A, Grimm H, Ng A (2006) Simulation-based optimization using local search and neural network metamodels. In: The artificial intelligence and soft computing proceeding, ACTA Press, Palma de Mallorca, pp 149–156

  87. Neelakantan TR, Pundarikanthan NV (2000) Neural network-based simulation-optimization model for reservoir operation. J Water Resour Plan Manag 126(2):57–64

    Article  Google Scholar 

  88. Wang L (2005) A hybrid genetic algorithm-neural network strategy for simulation optimization. Appl Math Comput 170(2):1329–1343

    Article  MATH  MathSciNet  Google Scholar 

  89. Pan QK, Wang WH, Zhu JY (2006) Effective hybrid heuristics based on particle swarm optimization and simulated annealing algorithm for job shop scheduling. China Mech Eng 17(10):1044–1046

    Google Scholar 

  90. Wah BW, Chen Y (2001) Hybrid constrained simulated annealing and genetic algorithms for nonlinear constrained optimization. In: The IEEE conference on evolutionary computation proceedings, vol 2, IEEE Press, Seoul, pp 925–932

  91. Heitzinger C, Selberherr S (2002) An extensible TCAD optimization framework combining gradient based and genetic optimizers. Microelectron J 33(1–2):61–68

    Article  Google Scholar 

  92. Montastruc L, Azzaro-Pantel C, Pibouleau L, Domenech S (2004) Use of genetic algorithms and gradient based optimization techniques for calcium phosphate precipitation. Chem Eng Process 43(10):1289–1298

    Article  Google Scholar 

  93. Ahmed MA, Alkhamis TM (2002) Simulation-based optimization using simulated annealing with ranking and selection. Comput Oper Res 29(2):387–402

    Article  MATH  Google Scholar 

  94. Wong BK, Bodnovich TA, Selvi Y (1997) Neural network applications in business: a review and analysis of the literature. Decis Support Syst 19(4):301–320

    Article  Google Scholar 

  95. Wong BK, Selvi Y (1998) Neural network applications in finance: a review and analysis of literature. Inf Manag 34(3):129–139

    Article  Google Scholar 

  96. Avi-Itzhak HI, Diep TA, Garland H (1995) High accuracy optical character recognition using neural networks with centroid dithering. IEEE Trans Pattern Anal Mach Intell 17(2):218–224

    Article  Google Scholar 

  97. Leung HF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1):79–88

    Article  Google Scholar 

  98. Wang WJ, Tang XC, Li WC (1993) Variable structure neural network model and its applications. In: The IEEE region 10 conference on computer, communication, control and power engineering, IEEE Press, Beijing, pp 799–802

  99. Chang MP, Chang DS, Yu CC (1999) Nonlinear state estimation using variable-structure neural network. J Chin Inst Chem Eng 30(4):289–296

    Google Scholar 

  100. Luan DN, Chang DS, Chang MP, Yu CC (2000) Diagnosis of abrupt faults using variable-structure neural network. J Chin Inst Eng 23(5):567–574

    Google Scholar 

  101. Mekki H, Chtourou M, Derbel N (2006) Variable structure neural networks for adaptive control of nonlinear systems using the stochastic approximation. Simul Model Pract Theory 14(7):1000–1009

    Article  Google Scholar 

  102. Ling SH, Lam HK, Leung FHF, Lee YS (2003) A genetic algorithm based variable structure neural network. In: IECON proceedings (industrial electronics conference), IEEE Press, Roanoke, pp 436–441

  103. Hsiao YT, Chuang CL, Jiang JA (2005) A novel dynamic structural neural network with neuro-regeneration and neuro-degeneration. In: The ninth international workshop on cellular neural networks and their applications, IEEE Press, Hsinchu, pp 9–14

  104. Bhat NV, Minderman PA, Mcavoy T, Wang NS (1990) Modeling chemical process systems via neural computation. IEEE Control Syst Mag 10(3):24–30

    Article  Google Scholar 

  105. Fukuda T, Shibata T (1992) Theory and applications of neural networks for industrial control systems. IEEE Trans Ind Electron 39(6):472–490

    Article  Google Scholar 

  106. Xia YS (2004) An extended projection neural network for constrained optimization. Neural Comput 16(4):863–883

    Article  MATH  Google Scholar 

  107. Xia YS, Wang J (2004) A recurrent neural network for solving nonlinear optimization subject to nonlinear inequality constraints. IEEE Trans Circuits Syst 51(7):1385–1394

    Article  MathSciNet  Google Scholar 

  108. Kitano H (1994) Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms. Phys D 75(1–3):225–238

    Article  MATH  Google Scholar 

  109. Boozarjomehry RB, Svrcek WY (2001) Automatic design of neural network structures. Comput Chem Eng 25(1):1075–1088

    Article  Google Scholar 

  110. Xu L, Jordan MI, Hinton GE (1995) An alternative model for mixtures of experts. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 633–640

    Google Scholar 

  111. Amari S, Murata N, Muller KR et al (1997) Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans Neural Netw 8(5):985–996

    Article  Google Scholar 

  112. Moody J, Utans J (1994) Architecture selection strategies for neural networks: application to corporate bond rating prediction in neural networks in the capital markets. Wiley, New York

    Google Scholar 

  113. Kottathra K, Attikiouzel Y (1996) A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks. J Netw Comput Appl 19(2):135–147

    Article  Google Scholar 

  114. Lindenmayer A (1968) Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J Theor Biol 18(3):280–300

    Article  Google Scholar 

  115. Lindenmayer A (1968) Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J Theor Biol 18(3):300–316

    Article  Google Scholar 

  116. Rovithakis A, Chalkiadakis I, Zervakis ME (2004) High-order neural network structure selection for function approximation applications using genetic algorithms. IEEE Trans Syst Man Cybern B Cybern 34(1):150–158

    Article  Google Scholar 

  117. Henrique M, Lima EL, Seborg DE (2000) Model structure determination in neural network models. Chem Eng Sci 55(22):5457–5469

    Article  Google Scholar 

  118. Mao KZ, Tan KC, Ser W (2000) Probabilistic neural-network structure determination for pattern classification. IEEE Trans Neural Netw 11(4):1009–1016

    Article  Google Scholar 

  119. Na MG, Sim YR, Park KH, Lee SM (2003) Sensor monitoring using a fuzzy neural network with an automatic structure constructor. IEEE Trans Nucl Sci 50(2):241–250

    Article  Google Scholar 

  120. Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans Neural Netw 17(1):69–70

    Article  Google Scholar 

  121. Mao KZ, Huang CB (2005) Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans Neural Netw 16(6):1531–1540

    Article  Google Scholar 

  122. Zhong WC, Liu J, Xue MZ et al (2004) A multiagent genetic algorithm for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 34(2):1128–1141

    Article  Google Scholar 

  123. Tsai JT, Liu TK, Chou JH (2004) Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans Evol Comput 8(4):365–377

    Article  Google Scholar 

  124. Tu Z, Lu Y (2004) A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE Trans Evol Comput 8(5):456–470

    Article  Google Scholar 

  125. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MATH  MathSciNet  Google Scholar 

  126. Rissanen J (1983) A universal prior for integers and estimation by minimum description length. Ann Stat 11(2):416–431

    Article  MATH  MathSciNet  Google Scholar 

  127. Arribas JI, Cid-Sueiro J (2005) A model selection algorithm for posteriori probability estimation with neural networks. IEEE Trans Neural Netw 16(4):799–809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Yu-An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, Z., Yu-An, T., Xue-Lan, Z. et al. An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Comput & Applic 19, 883–901 (2010). https://doi.org/10.1007/s00521-010-0348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0348-x

Keywords

Navigation