Skip to main content
Log in

Anatomy-based organization of morphology and control in self-reconfigurable modular robots

  • Swarm Robotics
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we address the challenge of realizing full-body behaviors in scalable modular robots. We present an experimental study of a biologically inspired approach to organize the morphology and control of modular robots. The approach introduces a nested hierarchy that decomposes the complexity of assembling and commanding a functional robot made of numerous simple modules. The purpose is to support versatility, scalability, and provide design abstraction. The robots we describe incorporate anatomy-inspired parts such as muscles, bones, and joints, and these parts in turn are assembled from modules. Each of those parts encapsulates one or more functions, e.g., a muscle can contract. Control of the robot can then be cast as a problem of controlling its anatomical parts rather than each discrete module. To validate this approach, we perform experiments with micron-scale spherical catom modules in simulation. The robots we simulate are increasingly complex and include snake, crawler, quadruped, cilia surface, arm-joint-muscle, and grasping robots. We conclude that this is a promising approach for future microscopic many-modules systems, but also that it is not applicable to relatively weak and slow homogeneous systems such as the centimeter-scale ATRON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ashley-Rollman M, Goldstein S, Lee P, Mowry T, Pillai P (2007) Meld: a declarative approach to programming ensembles. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’07), pp 2794–2800

  2. Bhat P, Kuffner J, Goldstein S, Srinivasa S (2006) Hierarchical motion planning for self-reconfigurable modular robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS ’06), pp 886–891

  3. Bojinov H, Casal A, Hogg T (2000) Emergent structures in modular self-reconfigurable robots. In: Proceedings of the IEEE/RSJ international conference on robotics & automation (ICRA’00), pp 1734–1741

  4. Bongard J (2002) Evolving modular genetic regulatory networks. In: Proceedings of congress on evolutionary computation (CEC ’02), vol 2, pp 1872–1877

  5. Brandt D, Christensen DJ, Lund HH (2007) ATRON robots: versatility from self-reconfigurable modules. In: Proceedings of the IEEE international conference on mechatronics and automation (ICMA’07). Harbin, China, pp 2254–2260

  6. Bueno-Barrachina J, Ca nas Peñuelas C, Catalan-Izquierdo S, Cavallé-Sesé F (2009) Capacitance evaluation on perpendicular plate capacitors by means of finite element analysis. In: Proceedings of international conference on renewable energies and power quality (ICREPQ’09)

  7. Butler Z, Rus D (2003) Distributed locomotion algorithms for self-reconfigurable robots operating on rough terrain. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation (CIRA’03), pp 880–885

  8. Campbell J, Pillai P (2008) Collective actuation. Int J Robotics Res 27:299–314

    Article  Google Scholar 

  9. Castano A, Shen W-M, Will P (2000) Conro: towards deployable robots with inter-robot metamorphic capabilities. Auton Robots 8(3):309–324

    Article  Google Scholar 

  10. Chirikjian G (1994) Kinematics of a metamorphic robotic system. In: Proceedings of the IEEE international conference on robotics and automation, pp 449–455

  11. Christensen DJ (2006) Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’06). Orlando, FL, pp 2539–2545

  12. Christensen DJ, Campbell J (April 2007) Locomotion of miniature catom chains: Scale effects on gait and velocity. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’07). Rome, Italy, pp 2254–2260

  13. Fukuda T, Nakagawa S (1988) Dynamically reconfigurable robotic system. In: Proceedings of the IEEE international conference on robotics & automation (ICRA’88), pp 1581–1586

  14. Fukuda T, Nakagawa S, Kawauchi Y, Buss M (1988) Self organizing robots based on cell structures-cebot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’88), pp 145–150

  15. Fukuda T, Ueyama T (1994) Cellular robotics and micro robotic systems, vol 10. World Scientific Publishing, Singapore, p 38

    Google Scholar 

  16. Garcia RFM, Schultz UP, Stoy K (2009) On the efficiency of local and global communication in modular robots. In: Proceedings of the IEEE/RJS international conference on intelligent robots and systems (IROS’09), pp 1502–1508

  17. Goldstein S, Campbell J, Mowry T (2005) Programmable matter. Comput Aided Design 38(6):99–101

    Google Scholar 

  18. Goldstein S, Mowry T (2004) Claytronics: a scalable basis for future robots. In: Robosphere

  19. Griffith SDG, Jacobson J (2005) Self-replication from random parts. Nat Biotechnol 437:636

    Google Scholar 

  20. Groß R, Bonani M, Mondada F, Dorigo M (2006) Autonomous self-assembly in a swarm-bot. In: Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005). Springer, Berlin, Germany, pp 314–322

  21. Hotz PE (2003) Exploring regenerative mechanisms found in flatworms by artificial evolutionary techniques using genetic regulatory networks. In: Congress on evolutionary computation (CEC ’03), vol 3, pp 2026–2033

  22. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  Google Scholar 

  23. Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348

    Article  MathSciNet  Google Scholar 

  24. Jørgensen MW, Østergaard EH, Lund HH (2004) Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS’04), pp 2068–2073

  25. Kamimura A, Kurokawa H, Yoshida E, Murata S, Tomita K, Kokaji S (2005) Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans Mechatron 10(3):314–325

    Google Scholar 

  26. Karagozler ME, Campbell J, Fedder GK, Goldstein SC, Weller MP, Yoon BW (2007) Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’07), pp 2779–2786

  27. Karagozler ME, Goldstein SC, Reid JR (2009) Stress-driven mems assembly + electrostatic forces = 1 mm diameter robot. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’09), pp 2763–2769

  28. Klavins E (2007) Programmable self-assembly. IEEE Control Syst Mag 27(4):43–56

    Article  MathSciNet  Google Scholar 

  29. Kotay K, Rus D (2000) Algorithms for self-reconfiguring molecule motion planning. In: Proceedings of IEEE international conference on intelligent robots and systems (IROS’00), pp 2184–2193

  30. Kotay K, Rus D, Vona M, McGray C (1998) The selfreconfiguring robotic molecule: design and control algorithms. In: Robotics: the algorithmic perspective. AK Peters, pp 375–386

  31. Kurokawa H, Murata S, Yoshida E, Tomita K, Kokaji S (1998) A 3-d self-reconfigurable structure and experiments. In: Proceedings of the IEEE/RJS international conference on intelligent robots and systems (IROS’98), vol 2. Victoria, BC, Canada, pp 860–665

  32. Kurokawa H, Tomita K, Kamimura K, Kokaji S, Hasuo T, Murata S (2008) Distributed self-reconfiguration of M-TRAN III modular robotic system. Int J Robotics Res 27(3–4):373–386

    Google Scholar 

  33. Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nat Biotechnol 406:974–978

    Google Scholar 

  34. Marbach D, Ijspeert AJ (2005) Online optimization of modular robot locomotion. In: Proceedings of the IEEE international conference on mechatronics and automation (ICMA’05), pp 248–253

  35. Murata S, Kurokawa H, Kokaji S (1994) Self-assembling machine. In: Proceedings of IEEE international conference on robotics and automation (ICRA’94), pp 441–448

  36. Murata S, Yoshida E, Tomita K, Kurokawa H, Kamimura A, Kokaji S (2000) Hardware design of modular robotic system. In: Proceedings, IEEE/RSJ international conference on intelligent robots and systems (IROS’00). Takamatsu, Japan, pp 2210–2217

  37. Nagpal R (1999) Organizing a global coordinate system from local information on an amorphous computer. AI Memo 1666

  38. Østergaard EH, Kassow K, Beck R, Lund HH (2006) Design of the ATRON lattice-based self-reconfigurable robot. Auton Robots 21:165–183

    Article  Google Scholar 

  39. Østergaard EH, Lund HH (2004) Distributed cluster walk for the ATRON self-reconfigurable robot. In: Proceedings of the 8th conference on intelligent autonomous systems (IAS-8). Amsterdam, Holland, pp 291–298

  40. Reid JR, Vasilyev V, Webster RT (2008) Building micro-robots: a path to sub-mm3 autonomous systems. Nanotechnology 2008 3:174–177

    Google Scholar 

  41. De Rosa M, Goldstein S, Lee P, Campbell J, Pillai P (2006) Scalable shape sculpting via hole motion: Motion planning in lattice-constrained modular robots. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’06). Orlando, pp 1462–1468

  42. Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystalline robot. In: Proceedingsof the IEEE international conference on robotics and automation (ICRA’00) vol 2, pp 1726–1733

  43. Schultz UP, Christensen DJ, Stoy K (October 2007) A domain-specific language for programming self-reconfigurable robots. In: Workshop on automatic program generation for embedded systems (APGES), pp 28–36

  44. Shen W-M, Krivokon M, Chiu H, Everist J, Rubenstein M, Venkatesh J (2006) Multimode locomotion via superbot reconfigurable robots. Auton Robots 20(2):165–177

    Article  Google Scholar 

  45. Shen W-M, Salemi B, Will P (2002) Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans Robotics Autom 18:700–712

    Article  Google Scholar 

  46. Sims K (1994) Evolving 3d morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of artificial life IV. MIT Press, Cambridge, pp 28–39

  47. Smith R (2005) Open dynamics engine. http://www.ode.org

  48. Stoy K (2004) Controlling self-reconfiguration using cellular automata and gradients. In: Proceedings of the 8th conference on intelligent autonomous systems (IAS-8). Amsterdam, pp 693–702

  49. Stoy K, Lyder A, Garcia RFM, Christensen DJ (2007) Hierarchical robots. In: Proceedings of the IROS workshop on self-reconfigurable modular robots, San Diego, CA

  50. Stoy K, Shen W-M, Will P (2002) Using role based control to produce locomotion in chain-type self-reconfigurable robots. IEEE Trans Mechatron 7(4):410–417

    Article  Google Scholar 

  51. White P, Zykov V, Bongard J, Lipson H (June 2005) Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of robotics: science and systems. Cambridge, USA, pp 161–168

  52. Yim M (1994) Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University

  53. Yim M, Duff DG, Roufas KD (2000) Polybot: a modular reconfigurable robot. In: Proceedings of IEEE international conference on robotics & automation (ICRA). San Francisco, CA, USA, pp 514–520

  54. Yim M, Shen W-M, Salemi B, Rus Daniela, Moll M, Lipson H, Klavins E (2007) Modular self-reconfigurable robot systems: challenges and opportunities for the future. IEEE Robotics Autom Mag 14(1):43–52

    Article  Google Scholar 

  55. Yim M, Shirmohammadi B, Sastra J, Park M, Dugan M, Taylor CJ (2007) Towards robotics self-reassembly after explosion. In: Video proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’07), San Diego, CA

  56. Zhang Y, Yim M, Eldershaw C, Duff D, Roufas K (2003) Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’03). Las Vegas, Nevada, USA, pp 2442–2447

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Johan Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, D.J., Campbell, J. & Stoy, K. Anatomy-based organization of morphology and control in self-reconfigurable modular robots. Neural Comput & Applic 19, 787–805 (2010). https://doi.org/10.1007/s00521-010-0387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0387-3

Keywords

Navigation