Skip to main content
Log in

Multilayer perceptron for reference evapotranspiration estimation in a semiarid region

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Calculation of reference evapotranspiration (ETo) is essential in hydrology and agriculture. ETo plays an important role in planning and management of water resources and irrigation scheduling. The results of many studies strongly support the use of the Penman–Monteith FAO 56 (PMF-56) method as the standard method of estimating ETo. The basic obstacle to using this method widely is the numerous meteorological variables required. Multilayer perceptron (MLP) networks optimized with different learning algorithms and activation functions were applied for estimating ETo in a semiarid region in Iran. Four MLP models comprising various combinations of meteorological variables are developed. The MLP model which needs all of the meteorological parameters performed best for ETo estimation amongst the other MLP models. It was also found that the ConjugateGradient, DeltaBarDelta, DeltaBarDelta and Levenberg–Marquardt were the best algorithms for training the MLP1, MLP2, MLP3 and MLP4 models, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen RG, Periera LS, Raes D, Smith M (1998) Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and drainage Paper No. 56, FAO, Rome

  2. Anyadike RNC (1987) The Lincare evaporation formula tested and compared to others in various climates over West Africa. Agric For Meteorol 39(2–3):111–119

    Article  Google Scholar 

  3. Aytek A (2009) Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Comput 13(7):691–700

    Google Scholar 

  4. Barnett N, Madramootoo CA, Perrone J (1998) Performance of some evapotranspiration equations at a site in Quebec. Can Agric Eng 40(2):89–95

    Google Scholar 

  5. Caudill M, Butler C (1992) Understanding neural networks: volume 1: basic networks. The MIT Press, Cambridge

    Google Scholar 

  6. Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manage 23(5):825–837

    Google Scholar 

  7. Dingman SL (1994) Physical hydrology. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Jahanbani H, El-Shafie AH (2011) Application of artificial neural network in estimating monthly time series reference evapotranspiration with minimum and maximum temperatures. Paddy Water Environ, 9(2):207–220

    Article  Google Scholar 

  9. Hansen VE, Israelsen OW, Stringham GE (1980) Irrigation principles and practices, 4th edn. Wiley, New York

    Google Scholar 

  10. Hosseinzadeh Talaee P, Heydari M, Fathi P, Marofi S, Tabari H (2011) Numerical model and computational intelligence approaches for estimating flow through rockfill dam. J Hydrol Eng ASCE. doi:10.1061/(ASCE)HE.1943-5584.0000446

  11. Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351:299–317

    Article  Google Scholar 

  12. Kisi Ö (2006) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51:1092–1105

    Article  Google Scholar 

  13. Kisi Ö (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21(6):1925–1934

    Article  Google Scholar 

  14. Kisi Ö (2008) The potential of different ANN techniques in evapotranspiration modeling. Hydrol Process 22:2449–2460

    Article  Google Scholar 

  15. Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrg Drain Eng 128(4):224–233

    Article  Google Scholar 

  16. Laaboudi A, Mouhouche B, Draoui B (2011) Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. Int J Biometeorol. doi:10.1007/s00484-011-0485-7

  17. Landeras G, Ortiz-Barredo A, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agr Water Manage 95:553–565

    Article  Google Scholar 

  18. Lopez-Urrea R, de Santa Martın, Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agr Water Manage 85:15–26

    Article  Google Scholar 

  19. Marofi S, Tabari H, Zare Abyaneh H (2011) Predicting spatial distribution of snow water equivalent using multivariate non-linear regression and computational intelligence methods. Water Resour Manage 25(5):1417–1435

    Article  Google Scholar 

  20. Martí P, González-Altozano P, Gasque M (2011) Reference evapotranspiration estimation without local climatic data. Irrig Sci 29(6):479–495

    Article  Google Scholar 

  21. NeuroDimension Inc (2005) Developers of NeuroSolutions v5.01: neural network simulator. The World Wide Web address is http://www.nd.com, Gainesville

  22. NeuroSolutions Manual (2003) The neural network simulation environment. NeuroDimension Inc., FL

    Google Scholar 

  23. Qiu GY, Miyamoto K, Sase S, Gao Y, Shi P, Yano T (2002) Comparison of the three-temperature model and conventional models for estimating transpiration. JPN Agric Res Quart 36(2):73–82

    Google Scholar 

  24. Raju KS, Kumar DN, Duckstein L (2006) Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Comput Oper Res 33:1138–1153

    Article  MATH  Google Scholar 

  25. Rezaeian-Zadeh M, Tabari H (2012) MLP-based drought forecasting in different climatic regions. Theor Appl Climatol. doi:10.1007/s00704-011-0568-8

  26. Rezaeian-Zadeh M, Tabari H, Abghari H (2011) Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions. Arab J Geosci. doi:10.1007/s12517-011-0517-y

  27. Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climate data using neural computing technique. J Irrg Drain Eng 129(3):214–218

    Article  Google Scholar 

  28. Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manage 24:2311–2337

    Article  Google Scholar 

  29. Tabari H, Grismer ME, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci. doi:10.1007/s00271-011-0295-z

  30. Tabari H, Hosseinzadeh Talaee P (2011) Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J Hydrol Engin 16(10):837–845

    Google Scholar 

  31. Tabari H, Marofi S, Sabziparvar AA (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406

    Article  Google Scholar 

  32. Tabari H, Marofi S, Zare Abyaneh H, Sharifi MR (2010) Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput Applic 19:625–635

    Article  Google Scholar 

  33. Tabari H, Sabziparvar AA, Ahmadi M (2011) Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteor Atmos Phys 110:135–142

    Article  Google Scholar 

  34. Torres M, Hervas C, Amador F (2005) Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms. Comput Oper Res 32:2653–2670

    Article  MATH  Google Scholar 

  35. Trajkovic S (2009) Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration. Hydrol Process 23:874–880

    Article  Google Scholar 

  36. Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. J. Irrig Drain Eng ASCE 129(6):454–457

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Islamic Republic of Iran Meteorological Organization (IRIMO) for providing the requisite meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hosseinzadeh Talaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabari, H., Hosseinzadeh Talaee, P. Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput & Applic 23, 341–348 (2013). https://doi.org/10.1007/s00521-012-0904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0904-7

Keywords

Navigation