Skip to main content
Log in

Bat algorithm for constrained optimization tasks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, we use a new metaheuristic optimization algorithm, called bat algorithm (BA), to solve constraint optimization tasks. BA is verified using several classical benchmark constraint problems. For further validation, BA is applied to three benchmark constraint engineering problems reported in the specialized literature. The performance of the bat algorithm is compared with various existing algorithms. The optimal solutions obtained by BA are found to be better than the best solutions provided by the existing methods. Finally, the unique search features used in BA are analyzed, and their implications for future research are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol

  2. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York

    Google Scholar 

  3. Talbi E (2009) Metaheuristics: from design to implementation. Wiley, Hoboken

    MATH  Google Scholar 

  4. Yang X-S (2009) Harmony search as a metaheuristic algorithm. In: Geem ZW (ed) Music-inspired harmony search: theory and applications. Springer, New York, pp 1–14

  5. Gandomi AH, Yang XS, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200

    Article  MathSciNet  MATH  Google Scholar 

  6. Akhtar S, Tai K, Ray T (2002) A socio-behavioral simulation model for engineering design optimization. Eng Optim 34(4):341–354

    Article  Google Scholar 

  7. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2012.05.010

  8. Lee KS, Geem ZW (2004) A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933

    Article  Google Scholar 

  9. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Google Scholar 

  10. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  11. Gandomi AH, Yang XS, Alavi AH (2012) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng Comput, in press. doi:10.1007/s00366-011-0241-y

  12. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. (eds) Nature inspired cooperative strategies for optimization (NISCO 2010). Studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74

  13. Altringham JD (1996) Bats: biology and behavior. Oxford University Press, Oxford

    Google Scholar 

  14. Richardson P (2008) Bats. Natural History Museum, London

    Google Scholar 

  15. Hock W, Schittkowski K (1981) Test examples for nonlinear programming codes. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  17. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  18. Hedar A, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Glob Optim 35:521–549

    Article  MathSciNet  MATH  Google Scholar 

  19. Amirjanov A (2006) The development of a changing range genetic algorithm. Comput Methods Appl Mech Eng 195:c2495–c2508

    Article  MathSciNet  Google Scholar 

  20. Aragon VS, Esquivel SC, Coello CCA (2010) A modified version of a T-cell algorithm for constrained optimization problems. Int J Numer Methods Eng 84:351–378

    MATH  Google Scholar 

  21. Becerra RL, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Methods Appl Mech Eng 195(33–36):4303–4322

    Article  MATH  Google Scholar 

  22. Bernardino HS, Barbosa HJC, Lemonge ACC (2006) Constraints handling in genetic algorithms via artificial immune systems. In: Genetic and evolutionary computation-GECCO 2006, genetic and evolutionary computation conference-Late Breaking Paper, Seattle, WA, USA

  23. Cabrera JCF, Coello CAC (2007) Handling constraints in particle swarm optimization using a small population size. In: Alexander Gelbukh, Angel Fernando Kuri Morales (eds) MICAI 2007: advances in artificial intelligence, 6th international conference on artificial intelligence, lecture notes in artificial intelligence, vol 4827. Springer, Aguascalientes, Mexico, pp 41–51

  24. Cortes NC, Trejo-Perez D, Coello CAC (2005) Handling constraints in global optimization using artificial immune system. In: Artificial immune systems, fourth international conference, ICARIS 2005, Banff, Canada. Lecture notes in computer science, vol 3627. Springer, Berlin, pp 234–247

  25. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7(1):19–44

    Article  Google Scholar 

  26. Montes EM, Coello CAC (2003) A simple multimembered evolution strategy to solve constrained optimization problems, Technical Report EVOCINV-04-2003, Evolutionary Computation Group at CINVESTAV, Secci′on de Computaci′on, Departamento de Ingenierıa El′ectrica, CINVESTAV-IPN, Mexico DF, Mexico

  27. Tessema B, Yen G (2006) A self adaptive penalty function based algorithm for constrained optimization. In: Proceedings 2006 IEEE congress on evolutionary computation, pp 246–253

  28. Venkatraman S, Yen GG (2005) A generic framework for constrained optimization using genetic algorithms. IEEE Trans Evol Comput 9(4):424–435

    Article  Google Scholar 

  29. Zhua W, Ali MM (2009) Solving nonlinearly constrained global optimization problem via an auxiliary function method. J Comput Appl Math 230:491–503

    Article  MathSciNet  Google Scholar 

  30. Barbosa HJC, Lemonge ACC (2002) An adaptive penalty scheme in genetic algorithms for constrained optimization problems. In: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2002). Morgan Kaufmann, San Francisco, pp 287–294

  31. Bernardino HS, Barbosa HJC, Lemonge ACC (2007) A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. In: 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore. IEEE Press, New York, pp 646–653

  32. Bernardino HS, Barbosa HJC, Lemonge ACC, Fonseca LG (2008) A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: 2008 congress on evolutionary computation (CEC’2008), Hong Kong. IEEE Service Center, Piscataway, pp 1455–1462

  33. Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319–326

    MATH  Google Scholar 

  34. Cai J, Thierauf G (1997) Evolution strategies in engineering optimization. Eng Optim 29(1):177–199

    Article  Google Scholar 

  35. Cao YJ, Wu QH. Mechanical design optimization by mixed variable evolutionary programming, In Proc 1997 Int Conf on Evolutionary Computation, Indianapolis; 1997, p. 443–446.

  36. Coello CAC (1999) Self-adaptive penalties for GA based optimization. Proc Congr Evol Comput 1:573–580

    Google Scholar 

  37. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  38. Coello CAC (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Environ Syst 17:319–346

    Article  Google Scholar 

  39. Coello CAC (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  40. Coello CAC (2004) Hybridizing a genetic algorithm with an artificial immune system for global optimization. Eng Optim 36(5):607–634

    Article  MathSciNet  Google Scholar 

  41. Coello CAC, Cortés NC (2004) Hybridizing a genetic algorithm with an artificial immune system for global optimization. Eng Optim 36(5):607–634

    Article  MathSciNet  Google Scholar 

  42. Coello CAC, Montes EM (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms, In Intelligent Engineering Systems through Artificial Neural Networks (ANNIE2001), Vol. 11, ASME Press, St. Louis, Missouri, pp 177–182.

  43. Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design. Evolutionary Algorithms in Engineering Applications, Springer, pp 497–514.

  44. Dos Santos Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683

    Google Scholar 

  45. Fu J, Fenton RG, Cleghorn WL (1991) A mixed integer discrete continuous programming method and its application to engineering design optimization. Eng Optim 17:263–280

    Article  Google Scholar 

  46. Hadj-Alouane AB, Bean JC (1997) A genetic algorithm for the multiple-choice integer program. Oper Res 45:92–101

    Article  MathSciNet  MATH  Google Scholar 

  47. He Q, Wang L (2006) An effective co-evolutionary particle swarm optimization for engineering optimization problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  48. He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36(5):585–605

    Article  MathSciNet  Google Scholar 

  49. Homaifar A, Lai SHY, Qi X (1994) Constrained optimization via genetic algorithms. Simulation 62(4):242–254

    Article  Google Scholar 

  50. Hu X, Eberhart RC, Shi Y (2003) Engineering optimization with particle swarm. In: Proc 2003 IEEE swarm intelligence symposium, pp 53–57

  51. Huang FZ, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    Article  MathSciNet  MATH  Google Scholar 

  52. Joines J, Houck C (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Fogel D (ed) Proc first IEEE conf on evolutionary computation, Orlando, Florida. IEEE Press, pp 579–584

  53. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des Trans 116:318–320

    Google Scholar 

  54. Lemonge ACC, Barbosa HJC (2004) An adaptive penalty scheme for genetic algorithms in structural optimization. Int J Numer Methods Eng 59:703–736

    Article  MATH  Google Scholar 

  55. Li HL, Chang CT (1998) An approximate approach of global optimization for polynomial programming problems. Eur J Oper Res 107(3):625–632

    Article  MathSciNet  MATH  Google Scholar 

  56. Li HL, Chou CT (1994) A global approach for nonlinear mixed discrete programming in design optimization. Eng Optim 22:109–122

    Article  Google Scholar 

  57. Litinetski VV, Abramzon BM (1998) Mars—a multistart adaptive random search method for global constrained optimization in engineering applications. Eng Optim 30(2):125–154

    Article  Google Scholar 

  58. Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. In: Proceedings of the 3rd annual conf on evolutionary programming. World Scientific, pp 98–108

  59. Montes EM, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  60. Montes EM, Ocaña BH (2008) Bacterial foraging for engineering design problems: preliminary results. In: Proceedings of the 4th Mexican congress on evolutionary computation (COMCEV’2008), pp 33–38, CIMAT, México, Oct 2008

  61. Montes EM, Coello CAC, Velázquez-Reyes J, Muñoz-Dávila L (2007) Multiple trial vectors in differential evolution for engineering design. Eng Optim 39(5):567–589

    Article  MathSciNet  Google Scholar 

  62. Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: Lecture notes in computer science (LNCS), vol 3612, pp 582–591

  63. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396

    Article  Google Scholar 

  64. Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In: Proc ASME design technology conf, Kissimine, FL, pp 95–105

  65. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. ASME J Mech Des 112(2):223–229

    Article  Google Scholar 

  66. Shih CJ, Lai TK (1995) Mixed-discrete fuzzy programming for nonlinear engineering optimization. Eng Optim 23(3):187–199

    Article  Google Scholar 

  67. Tsai JF, Li HL, Hu NZ (2002) Global optimization for signomial discrete programming problems in engineering design. Eng Optim 34(6):613–622

    Article  Google Scholar 

  68. Wu SJ, Chow PT (1995) Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Eng Optim 24:137–159

    Article  Google Scholar 

  69. Yun YS (2005) Study on Adaptive hybrid genetic algorithm and its applications to engineering design problems. Waseda University, MSc Thesis

  70. Zahara E, Kao YT (2009) Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886

    Article  Google Scholar 

  71. Zhang C, Wang HP (1993) Mixed-discrete nonlinear optimization with simulated annealing. Eng Optim 17(3):263–280

    Google Scholar 

  72. Leite JPB, Topping BHV (1998) Improved genetic operators for structural engineering optimization. Adv Eng Softw 29(7–9):529–562

    Article  Google Scholar 

  73. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  74. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29(11):2013–2015

    Article  Google Scholar 

  75. Atiqullah Mir M, Rao SS (2000) Simulated annealing and parallel processing: an implementation for constrained global design optimization. Eng Optim 32(5):659–685

    Google Scholar 

  76. Liu J-L (2005) Novel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problems. Eng Optim 37(5):499–519

    Article  MathSciNet  Google Scholar 

  77. Hwang S-F, He R-S (2006) A hybrid real-parameter genetic algorithm for function optimization. Adv Eng Inform 20:7–21

    Article  Google Scholar 

  78. Zhang J, Liang C, Huang Y, Wu J, Yang S (2009) An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Appl Math Comput 211:392–416

    Article  MathSciNet  MATH  Google Scholar 

  79. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  80. Siddall JN (1972) Analytical decision-making in engineering design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  81. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. ASME J Eng Ind 98(3):1021–1025

    Article  Google Scholar 

  82. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Article  Google Scholar 

  83. Belegundu AD (1982) A study of mathematical programming methods for structural optimization. Department of Civil and Environmental Engineering, University of Iowa, Iowa

    Google Scholar 

  84. Coello CAC, Becerra RL (2004) Efficient evolutionary through the use of a cultural algorithm. Eng Optim 36:219–236

    Article  Google Scholar 

  85. Hsu YL, Liu TC (2007) Developing a fuzzy proportional-derivative controller optimization engine for engineering design optimization problems. Eng Optim 39(6):679–700

    Article  MathSciNet  Google Scholar 

  86. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(3):735–748

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the work and help of Engineer Parvin Arjmandi (The University of Akron).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Gandomi.

Appendix

Appendix

The 13 benchmarked problems

1.1 Problem G 1

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = 5\sum\limits_{i = 1}^{4} {x_{i} - 5} \sum\limits_{i = 1}^{4} {x_{i}^{2} } - \sum\limits_{i = 5}^{13} {x_{i} } \hfill \\ s.t.\quad g_{1} (x) = 2x_{1} + 2x_{2} + x_{10} + x_{11} - 10 \le 0, \hfill \\ \quad \quad g_{2} (x) = 2x_{1} + 2x_{3} + x_{10} + x_{12} - 10 \le 0, \hfill \\ \quad \quad g_{3} (x) = 2x_{2} + 2x_{3} + x_{11} + x_{12} - 10 \le 0, \hfill \\ \quad \quad g_{4} (x) = - 8x_{1} + x_{10} \le 0, \hfill \\ \quad \quad g_{5} (x) = - 8x_{2} + x_{11} \le 0, \hfill \\ \quad \quad g_{6} (x) = - 8x_{3} + x_{12} \le 0, \hfill \\ \quad \quad g_{7} (x) = - 2x_{4} - x_{5} + x_{10} \le 0, \hfill \\ \quad \quad g_{8} (x) = - 2x_{6} - x_{7} + x_{11} \le 0, \hfill \\ \quad \quad g_{9} (x) = - 2x_{8} - x_{9} + x_{12} \le 0, \hfill \\ \quad \quad x_{i} \ge 0\quad i = 1, \ldots ,13, \hfill \\ \quad \quad x_{i} \le 1\quad i = 1, \ldots ,9,13. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {1,\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,100,\,100,\,100,\,1} \right)\,{\text{and}}\,L = \left( {0,\, \ldots ,\,0} \right). $$

Global minimum:

$$ x^{ * } = \left( {1,\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,3,\,3,\,3,\,1} \right),\,f(x^{ * } ) = - 15. $$

1.2 Problem G 2

$$ \begin{gathered} \mathop {\max }\limits_{x} f(x) = \left| {\frac{{\sum\nolimits_{i = 1}^{n} {\cos^{4} \left( {x_{i} } \right) - 2\prod\nolimits_{i = 1}^{n} {\cos^{2} \left( {x_{i} } \right)} } }}{{\sqrt {\sum\nolimits_{i = 1}^{n} {ix_{i}^{2} } } }}} \right| \hfill \\ s.t.\,\quad g_{1} (x) = - \prod\limits_{i = 1}^{n} {x_{i} } + 0.75 \le 0, \hfill \\ \quad \quad g_{2} (x) = \sum\limits_{i = 1}^{n} {x_{i} } - 7.5n \le 0. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {10,\, \ldots ,\,0} \right)\,{\text{and}}\,L = \left( {0,\, \ldots ,\,0} \right). $$

Best-known value:

$$ f(x^{ * } ) = 0.803619,\,{\text{for}}\,n = 20. $$

1.3 Problem G 3

$$ \begin{gathered} \mathop {\max }\limits_{x} f(x) = \left( {\sqrt n } \right)^{n} \prod\limits_{i = 1}^{n} {x_{i} } \hfill \\ s.t.\,\quad h_{1} (x) = \sum\limits_{i = 1}^{n} {x_{i}^{2} - 1 = 0} . \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {1,\, \ldots ,\,1} \right)\,{\text{and}}\,L = \left( {0,\, \ldots ,\,0} \right). $$

Global maximum:

$$ x^{ * } = \left( {\frac{1}{\sqrt n },\; \ldots ,\;\frac{1}{\sqrt n }} \right),\,f(x^{ * } )\; = 1. $$

1.4 Problem G 4

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = 5.3578547x_{2}^{3} + 0.8356891x_{1} x_{5} + 37.293239x_{1} - 40792.141 \hfill \\ s.t.\quad g_{1} (x) = u\left( x \right) - 92 \le 0, \hfill \\ \quad \quad g_{2} (x) = - u\left( x \right) \le 0, \hfill \\ \quad \quad g_{3} (x) = v\left( x \right) - 110 \le 0, \hfill \\ \quad \quad g_{4} (x) = - v\left( x \right) + 90 \le 0, \hfill \\ \quad \quad g_{5} (x) = w\left( x \right) - 25 \le 0, \hfill \\ \quad \quad g_{6} (x) = - w\left( x \right) + 20 \le 0, \hfill \\ \end{gathered} $$

where

$$ \begin{gathered} u\left( x \right) = 85.334407 + 0.0056858x_{2} x_{5} + 0.0006262x_{1} x_{4} - 0.0022053x_{3} x_{5} , \hfill \\ v\left( x \right) = 80.51249 + 0.0071317x_{2} x_{5} + 0.0029955x_{1} x_{2} + 0.0021813x_{3}^{2} , \hfill \\ w\left( x \right) = 9.300961 + 0.0047026x_{3} x_{5} + 0.0012547x_{1} x_{3} - 0.0019085x_{3} x_{4} . \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {102,\,45,\,45,\,45,\,45} \right)\,{\text{and}}\;L = \left( {78,\,33,\,27,\,27,\,27} \right). $$

Global minimum:

$$ x^{ * } = \left( {78,33,29.995256025682,45,36.775812905788,33} \right),\,f(x^{ * } ) = - 30665.539. $$

1.5 Problem G 5

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = 3x_{1} + 10^{ - 6} x_{1}^{3} + 2x_{2} + \frac{2}{3} \times 10^{ - 6} x_{2}^{3} \hfill \\ s.t.\quad g_{1} (x) = x_{3} - x_{4} - 0.55 \le 0, \hfill \\ \quad \quad g_{2} (x) = x_{4} - x_{3} - 0.55 \le 0, \hfill \\ \quad \quad h_{1} (x) = 1000\left[ {\sin \left( { - x_{3} - 0.25} \right) + \sin \left( { - x_{4} - 0.25} \right)} \right] + 894.8 - x_{1} = 0, \hfill \\ \quad \quad h_{2} (x) = 1000\left[ {\sin \left( {x_{3} - 0.25} \right) + \sin \left( {x_{3} - x_{4} - 0.25} \right)} \right] + 894.8 - x_{2} = 0, \hfill \\ \quad \quad h_{3} (x) = 1000\left[ {\sin \left( {x_{4} - 0.25} \right) + \sin \left( {x_{4} - x_{3} - 0.25} \right)} \right] + 1294.8 = 0. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {1200,\,1200,0.55,\,0.55} \right)\,{\text{and}}\;L = \left( {0,\,0,\, - 0.55,\; - 0.55} \right). $$

Best-known solution:

$$ x^{ * } = \left( {679.9453,\,1026,\,0.118876,\, - 0.3962336} \right),\,f(x^{ * } ) = 5126.4981. $$

1.6 Problem G 6

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = \left( {x_{1} - 10} \right)^{3} + \left( {x_{2} - 20} \right)^{3} \hfill \\ s.t.\quad g_{1} (x) = - \left( {x_{1} - 5} \right)^{2} - \left( {x_{2} - 5} \right)^{2} + 100 \le 0, \hfill \\ \quad \quad g_{2} (x) = \left( {x_{1} - 5} \right)^{2} + \left( {x_{2} - 5} \right)^{2} - 828 \le 0, \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {100,\,100} \right)\,{\text{and}}\;L = \left( {13,\,0} \right). $$

Global minimum:

$$ x^{ * } = \left( {14.095,\,0.84296} \right),\,f(x^{ * } ) = 6961.81388. $$

1.7 Problem G 7

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = x_{1}^{2} + x_{2}^{2} + x_{1} x_{2} - 14x_{1} - 16x_{2} + \left( {x_{3} - 10} \right)^{2} + 4\left( {x_{4} - 5} \right)^{2} + \left( {x_{5} - 3} \right)^{2} \hfill \\ \quad \quad \quad \quad \quad + 2\left( {x_{6} - 1} \right)^{2} + 5x_{7}^{2} + 7\left( {x_{8} - 11} \right)^{2} + 2\left( {x_{9} - 10} \right)^{2} + \left( {x_{10} - 7} \right)^{2} + 45 \hfill \\ s.t.\quad g_{1} (x) = 4x_{1} + 5x_{2} - 3x_{7} + 9x_{8} - 105 \le 0, \hfill \\ \quad \quad g_{2} (x) = 10x_{1} - 8x_{2} - 17x_{7} + 2x_{8} \le 0, \hfill \\ \quad \quad g_{3} (x) = - 8x_{1} + 2x_{2} + 5x_{9} - 2x_{10} - 12 \le 0, \hfill \\ \quad \quad g_{4} (x) = 3\left( {x_{1} - 2} \right)^{2} + 4\left( {x_{2} - 3} \right)^{2} + 2x_{2}^{3} - 7x_{4} - 120 \le 0, \hfill \\ \quad \quad g_{5} (x) = 5x_{1}^{2} + 8x_{2} + \left( {x_{3} - 6} \right)^{2} - 2x_{4} - 40 \le 0, \hfill \\ \quad \quad g_{6} (x) = - 0.5\left( {x_{1} - 8} \right)^{2} + 2\left( {x_{2} - 4} \right)^{2} + 3x_{5}^{2} - x_{6} - 30 \le 0, \hfill \\ \quad \quad g_{7} (x) = x_{1}^{2} + 2\left( {x_{2} - 2} \right)^{2} - 2x_{1} x_{2} + 14x_{5} - 6x_{6} \le 0, \hfill \\ \quad \quad g_{8} (x) = - 3x_{1} + 6x_{2} + 12\left( {x_{9} - 8} \right)^{2} - 7x_{10} \le 0. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {10,\, \ldots ,\,10} \right)\,{\text{and}}\;L = \left( { - 10,\, \ldots ,\, - 10} \right). $$

Global minimum:

$$ \begin{gathered} x^{ * } = \left( {2.171996,\,2.363683,\,8.773926,\,5.095984,\,0.9906548,\,1.430574,\,1.321644,\,} \right. \hfill \\ 9.828726,\,8.280092,\,8.375927,\,f(x^{ * } ) = 24.3062091. \hfill \\ \end{gathered} $$

1.8 Problem G 8

$$ \begin{gathered} \mathop {\max }\limits_{x} f(x) = \frac{{\sin \left( {2\pi x_{1} } \right)\sin \left( {2\pi x_{2} } \right)}}{{x_{1}^{3} \left( {x_{1} + x_{2} } \right)}} \hfill \\ s.t.\quad g_{1} (x) = x_{1}^{2} - x_{2} + 1 \le 0, \hfill \\ \quad \quad g_{2} (x) = 1 - x_{1} + \left( {x_{2} - 4} \right)^{2} \le 0, \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {10,\,10} \right)\,{\text{and}}\,L = \left( {0,\,0} \right). $$

Global maximum:

$$ x^{ * } = \left( {1.2279713,\,4.2453733} \right),\,f(x^{ * } ) = 0.095825. $$

1.9 Problem G 9

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = \left( {x_{1} - 10} \right)^{2} + 5\left( {x_{2} - 12} \right)^{2} + x_{3}^{4} + 3\left( {x_{4} - 11} \right)^{2} + 10x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6} x_{7} \hfill \\ \quad \quad \quad - 10x_{6} - 8x_{7} \quad \quad \hfill \\ s.t.\quad g_{1} (x) = 2x_{1}^{2} + 3x_{2}^{4} + x_{3} + 4x_{4}^{2} + 5x_{5} - 127 \le 0, \hfill \\ \quad \quad g_{2} (x) = 7x_{1} + 3x_{2} + 10x_{3}^{2} + x_{4} - x_{5} - 282 \le 0, \hfill \\ \quad \quad g_{3} (x) = 23x_{1} + x_{2}^{2} + 6x_{6}^{2} - 8x_{7} - 196 \le 0, \hfill \\ \quad \quad g_{4} (x) = 4x_{1}^{2} + x_{2}^{2} - 3x_{1} x_{2} + 2x_{3}^{2} + 5x_{6} - 11x_{7} \le 0, \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {10,\, \ldots ,\,10} \right)\,{\text{and}}\;L = \left( { - 10,\, \ldots ,\, - 10} \right). $$

Global minimum:

$$ \begin{gathered} x^{ * } = \left( {2.330499,\,1.951372, - 0.4775414,4.365726,\, - 0.6244870,1.038131,\,} \right.\quad \hfill \\ 1.59422\left. 7 \right),\,f(x^{ * } ) = 680.6300573. \hfill \\ \end{gathered} $$

1.10 Problem G 10

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = x_{1} + x_{2} + x_{3} \quad \quad \hfill \\ s.t.\quad g_{1} (x) = - 1 + 0.0025\left( {x_{4} + x_{6} } \right) \le 0, \hfill \\ \quad \quad g_{2} (x) = - 1 + 0.0025\left( { - x_{4} + x_{5} + x_{7} } \right) \le 0, \hfill \\ \quad \quad g_{3} (x) = - 1 + 0.01\left( { - x_{5} + x_{8} } \right) \le 0, \hfill \\ \quad \quad g_{4} (x) = 100x_{1} - x_{1} x_{6} + 833.33252x_{4} - 83333.333 \le 0, \hfill \\ \quad \quad g_{5} (x) = x_{2} x_{4} - x_{2} x_{7} - 1250x_{4} + 1250x_{5} \le 0, \hfill \\ \quad \quad g_{6} (x) = x_{3} x_{5} - x_{3} x_{8} - 2500x_{5} + 1250000 \le 0, \hfill \\ \end{gathered} $$

The bound constraints:

$$ \begin{gathered} U = \left( {10000,10000\,,\,10000\,,\,1000\,,\,1000\,,\,1000\,,\,1000\,,\,1000} \right)\,{\text{and}}\, \hfill \\ L = \left( {100,\,1000,\,1000,\,10,\,10,\,10,\,10,\,10} \right). \hfill \\ \end{gathered} $$

Global minimum:

$$ \begin{gathered} x^{ * } = \left( {579.3167,\,1359.943,5110.071,182.0174,\,295.5985,217.9799,286.4162\,} \right.\quad \hfill \\ \left. {395.5979} \right),\,f(x^{ * } ) = 7049.3307. \hfill \\ \end{gathered} $$

1.11 Problem G 11

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = x_{1}^{2} + \left( {x_{2} - 1} \right)^{2} \hfill \\ s.t.\quad h_{1} (x) = x_{2} - x_{1}^{2} = 0. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {1,\,1} \right)\,{\text{and}}\;L = \left( { - 1, - 1} \right). $$

Global maximum:

$$ x^{ * } = \left( { \pm \frac{1}{\sqrt 2 },\;\frac{1}{2}} \right)\,,\,\,f(x^{ * } )\; = 0.75. $$

1.12 Problem G 12

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = 1 - 0.01\left[ {\left( {x_{1} - 5} \right)^{2} + \left( {x_{3} - 5} \right)^{2} } \right]\quad \quad \hfill \\ s.t.\quad g_{i,j,k} (x) = \left( {x_{1} - i} \right)^{2} + \left( {x_{2} - j} \right)^{2} + \left( {x_{3} - k} \right)^{2} - 0.0625 \le 0,\quad i,j,k = 1,\,2,\, \ldots ,\,9\;. \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {10,10\,,\,10\,} \right)\,{\text{and}}\,L = \left( {0,\,0,\,0} \right). $$

Global minimum:

$$ x^{ * } = \left( {5,\;5,\;5} \right),\,f(x^{ * } ) = 1. $$

1.13 Problem G 13

$$ \begin{gathered} \mathop {\min }\limits_{x} f(x) = e^{{x_{1} x_{2} x_{3} x_{4} x_{5} }} \quad \hfill \\ s.t.\quad h_{1} (x) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} - 10 = 0, \hfill \\ \quad \quad h_{2} (x) = x_{2} x_{3} - 5x_{4} x_{5} = 0, \hfill \\ \quad \quad h_{3} (x) = x_{1}^{3} + x_{2}^{3} + 1 = 0, \hfill \\ \hfill \\ \end{gathered} $$

The bound constraints:

$$ U = \left( {2.3,\,2.3,\,2.3,\,2.3,\,2.3} \right)\,{\text{and}}\;L = \left( { - 2.3,\, - 2.3\,,\, - 2.3,\, - 2.3,\, - 2.3} \right). $$

Global minimum:

$$ x^{ * } = \left( { - 1.717143,\,1.595709,1.827247, - 0.7636413,\, - 0.763645} \right),\,f(x^{ * } ) = 0.0539498. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandomi, A.H., Yang, XS., Alavi, A.H. et al. Bat algorithm for constrained optimization tasks. Neural Comput & Applic 22, 1239–1255 (2013). https://doi.org/10.1007/s00521-012-1028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1028-9

Keywords

Navigation