Skip to main content
Log in

Evolutionary boundary constraint handling scheme

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The performance of an optimization tool is largely determined by the efficiency of the search algorithms used in the process as well as the proper handling of complex constraints. From the implementation point of view, an important part of task ensuring an efficient algorithm to work to its best capability is to handle the boundary constraints properly and effectively. As most studies in the literature have focused on the development of algorithms and performance evaluation and comparison of optimization algorithms, this crucial step has not been explored very well, and consequently only limited studies have been carried out in this field. This paper intends to propose a simple and yet efficient evolutionary scheme for handling boundary constraints. The simplicity of this approach means that the proposed scheme is very easy to implement and thus can be suitable for many applications. We demonstrate this approach with an efficient algorithm, differential evolution, and we also compare it with other boundary constraint handling approaches for a wide set of benchmark problems. Based on statistical parameters and especially mean values, the results obtained by the evolutionary scheme are better than the best known solutions obtained by the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd Ed., Luniver Press, Bristol

  2. Gandomi AH, Alavi AH, Herd K (2012) A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2012.05.010

    Google Scholar 

  3. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, London

  4. Michalewicz Z (1995) A survey of constraint handling techniques in evolutionary computation methods. In: proceedings of 4th annual conference on evolutionary programming, MIT Press, Cambridge MA, pp 135–155

  5. Goldberg DE (1975) The design of innovation: lessons from and for Competent Genetic Algorithms, Addison-Wesley, Reading, MA, 2002. J. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Anbor

  6. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Anbor

    Google Scholar 

  7. De Jong K (1975) Analysis of the behaviour of a class of genetic adaptive systems, PhD thesis, University of Michigan, Ann Anbor

  8. Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181:5227–5239

    Article  Google Scholar 

  9. Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization, Springer, Berlin

  10. Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  11. Nejat Pishkenari H, Mahboobi SH, Alasty A (2011) Optimum synthesis of fuzzy logic controller for trajectory tracking by differential evolution. Scientia Iranica 18(2):261–267

    Article  Google Scholar 

  12. Gandomi AH, Yang XS, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang T, Mohan AS (2005) A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel Propag Lett 4:112–117

    Article  Google Scholar 

  14. Xu S, Rahmat-Samii Y (2007) Boundary conditions in particle Swarm optimization revisited. IEEE Trans Antennas Propag 55(3):112–117

    Article  Google Scholar 

  15. Chen TY, Chi TM (2010) On the improvements of the particle swarm optimization algorithm. Adv Eng Softw 41:229–239

    Article  MATH  Google Scholar 

  16. Chu W, Gao X, Sorooshian S (2011) Handling boundary constraints for particle swarm optimization in high-dimensional search space. Inf Sci 181(20):4569–4581

    Article  Google Scholar 

  17. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

    Article  Google Scholar 

  18. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Global Optim 31:635–672

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Gandomi.

Appendices

Appendix 1: Detailed formulation of the benchmark problems

F1: Ackley Function

$$ f(X) = - a\,\exp \left( { - 0.02\sqrt {n^{ - 1} \sum\limits_{i = 1}^{n} {x_{i}^{2} } } } \right) - \exp \left( {n^{ - 1} \sum\limits_{i = 1}^{n} {\cos \left( {2\pi x_{i} } \right)} } \right) + a + e,\,a = 20 $$

F2: Becker and Lago Function

$$ f(X) = \left( {\left| {x_{1} } \right| - 5} \right)^{2} + \left( {\left| {x_{2} } \right| - 5} \right)^{2} $$

F3: Branin Function

$$ f(X) = a\left( {x_{2} - bx_{1}^{2} + cx_{1} - d} \right)^{2} g\left( {1 - h} \right)\cos \left( {x_{1} } \right) + g $$

where

$$ a = 1,\,b = 1.25\pi^{ - 2} ,\,c = 5\pi^{ - 1} ,\,d = 6,\,g = 10,\,h = 0.125\pi^{ - 1} $$

F4: Dekkers and Aarts Function

$$ f(X) = \left( {x_{1} - 1} \right)^{2} + \sum\limits_{i = 2}^{n} i \left( {2x_{i}^{2} - x_{i - 1} } \right)^{2} $$

F5: Easom Function

$$ f(X) = - \cos \left( {x_{1} } \right)\cos \left( {x_{2} } \right)\exp \left( { - \left( {x_{1} - \pi } \right)^{2} - \left( {x_{2} - \pi } \right)^{2} } \right) $$

F6: Goldstein and Price Function

$$ \begin{aligned} f(X) = & \left( {1 + \left( {x_{1} + x_{2} + 1} \right)^{2} \left( {19 - 14x_{1} + 3x_{1}^{2} - 14x_{2} - 6x_{1} x_{2} + 3x_{2}^{2} } \right)} \right) \\ & \times \left( {30 + \left( {2x_{1} - 3x_{2} } \right)^{2} \left( {18 - 32x_{1} + 12x_{1}^{2} + 48x_{2} - 36x_{1} x_{2} + 27x_{2}^{2} } \right)} \right) \\ \end{aligned} $$

F7: Griewank Function

$$ f(X) = 1 + \frac{1}{4,000}\sum\limits_{i = 1}^{n} {x_{i}^{2} } - \prod\limits_{i = 1}^{n} {\cos \left( {\frac{{x_{i} }}{\sqrt i }} \right)} $$

F8: Hartman 3 Function (Table 3)

Table 3 Constants for Hartman 3 Function
$$ f(X) = - \sum\limits_{i = 1}^{4} {c_{i} \exp } \left( { - \sum\limits_{j = 1}^{4} {a_{ij} \left( {x_{j} - p_{ij} } \right)^{2} } } \right) $$

F9: Hartman 6 Function (Table 4)

Table 4 Constants for Hartman 6 Function
$$ f(X) = - \sum\limits_{i = 1}^{4} {c_{i} \exp } \left( { - \sum\limits_{j = 1}^{6} {a_{ij} \left( {x_{j} - p_{ij} } \right)^{2} } } \right) $$

F10: Hosaki Function (Table 5)

Table 5 Constants for Kowalik Function
$$ f(X) = x_{2}^{2} \left( {1 - 8x_{1} + 7x_{1}^{2} - \frac{{7x_{1}^{3} }}{3} + \frac{{x_{1}^{4} }}{4}} \right)\exp \left( { - x_{2} } \right) $$

F11: Kowalik Function

$$ f(X) = \sum\limits_{i = 1}^{11} {\left( {a{}_{i} - \frac{{x{}_{1}\left( {1 + x{}_{2}b{}_{i}} \right)}}{{\left( {1 + x{}_{3}b{}_{i} + x{}_{4}b{}_{i}^{2} } \right)}}} \right)}^{2} $$

F12: Levy and Montalvo 1 Function

$$ \begin{aligned} f(X) = & \frac{\pi }{n}\left( {10\sin^{2} \left( {\pi y_{1} } \right)) + \sum\limits_{i = 1}^{n - 1} {\left( {y_{i} - 1} \right)^{2} \left( {1 + 10\sin^{2} \left( {\pi y_{i + 1} } \right)} \right)} + \left( {y_{n} - 1} \right)^{2} } \right) \\ y_{i} = & 1 + \frac{{x_{i} + 1}}{4} \\ \end{aligned} $$

F13: Levy and Montalvo 2 Function

$$ f(X) = \frac{1}{10}\left( {\sin^{2} \left( {3\pi x_{1} } \right)) + \sum\limits_{i = 1}^{n - 1} {\left( {x_{i} - 1} \right)^{2} \left( {1 + \sin^{2} \left( {3\pi x_{i + 1} } \right)} \right)} + \left( {x_{n} - 1} \right)^{2} \left( {1 + \sin^{2} \left( {2\pi x_{i + 1} } \right)} \right)} \right) $$

F14: Modified Langerman Function (Table 6)

Table 6 Constants for Langerman Function
$$ f(X) = - \sum\limits_{i = 1}^{5} {c_{j} \cos \left( {\frac{{d_{j} }}{\pi }} \right)} \exp \left( { - \pi d_{j} } \right) $$

F15: Neumaier 3 Function

$$ f(X) = \sum\limits_{i = 1}^{n} {\left( {x_{i} - 1} \right)^{2} - \sum\limits_{i = 2}^{n} {x_{i} } } x_{i - 1} $$

F16: Paviani Function

$$ f(X) = \sum\limits_{i = 1}^{10} {\left( {\left( {\ln \left( {x_{i} - 2} \right)} \right)^{2} + \left( {\ln \left( {10 - x_{i} } \right)} \right)^{2} } \right) - \left( {\prod\limits_{i = 1}^{10} {x_{i} } } \right)^{\frac{1}{5}} } $$

F17: Rastrigin Function

$$ f(X) = 10n + \sum\limits_{i = 1}^{n} {\left( {x_{i}^{2} - 10\cos \left( {2\pi x_{i} } \right)} \right)} $$

F18: Rosenbrock Function

$$ f(X) = \sum\limits_{i = 1}^{n - 1} {\left( {100\left( {x_{i + 1} - x_{i}^{2} } \right)^{2} + \left( {x_{i} - 1} \right)^{2} } \right)} $$

F19: Shekel’s Foxholes Function (Table 7)

Table 7 Constants for Langerman Function
$$ f(X) = - \sum\limits_{j = 1}^{30} {\frac{1}{{c_{j} + \sum\limits_{i = 1}^{n} {\left( {x_{i} - a_{ji} } \right)^{2} } }}} $$

F20: Wood Function

$$ \begin{aligned} f(X) = & 100\left( {x_{2} - x_{1}^{2} } \right)^{2} + \left( {x_{1} - 1} \right)^{2} + 90\left( {x_{4} - x_{3}^{2} } \right)^{2} + \left( {x_{3} - 1} \right)^{2} \\ + & 10.1\left( {\left( {x_{2} - 1} \right)^{2} + \left( {x_{4} - 1} \right)^{2} } \right) + 19.8\left( {x_{2} - 1} \right)\left( {x_{4} - 1} \right) \\ \end{aligned} $$

Appendix 2

See Table 8.

Table 8 Statistical features of the best solutions obtained by existing and proposed boundary constraint schemes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandomi, A.H., Yang, XS. Evolutionary boundary constraint handling scheme. Neural Comput & Applic 21, 1449–1462 (2012). https://doi.org/10.1007/s00521-012-1069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1069-0

Keywords

Navigation