Skip to main content
Log in

Research on the new dynamics properties for a noise-induced excited system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Three induces are discussed to study the new dynamics properties both analytically and numerically for noise-induced Fitzhugh-Nagumo system; the three induces are as follows: Lyapunov exponent, the density distribution of trajectories and power spectrum; the numerical experiment indicated that the noise can induce the system to quite regular dynamics, including coherence resonance (in the case of uncoupling) and stochastic synchronization (in the case of coupling), noise can control the dynamics properties and some other new phenomena that the synchronization takes place only for some moderate noise intensity is also found for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A 14:L453–L457

    Article  MathSciNet  Google Scholar 

  2. Benzi R, Parisi G, Sutera A et al (1982) Stochastic resonance in climatic change. Tellus 34:10–16

    Article  Google Scholar 

  3. Benzi R, Parisi G, Sutera A et al (1983) A theory of stochastic resonance in climatic change. SIAM J Appl Math 43:565–578

    Article  MathSciNet  Google Scholar 

  4. Bulsara AR, Gammaitoni L (1996) Tuning into noise. Phys Today 49(3):39–45

    Article  Google Scholar 

  5. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287

    Article  Google Scholar 

  6. Gammaitoni L (2007) Noise limited computational speed. Appl Phys Lett 91(22):224104

    Article  Google Scholar 

  7. Fauve S, Heslot F (1983) Stochastic resonance in a bistable system. Phys Lett A 97:5–7

    Article  Google Scholar 

  8. Palonpon A, Amistoso J, Holdsworth J, Garcia W, Saloma C (1998) Measurement of weak transmittances by stochastic resonance. Opt Lett 23(18):1480–1481

    Article  Google Scholar 

  9. Gammaitoni L (1995) Stochastic resonance and the dithering effect in threshold physical systems. Phys Rev E 52(5):4691–4699

    Article  Google Scholar 

  10. Kang YM (2011) Coherence resonance in subdiffusive fractional Klein-Kramers periodic potential systems without a bifurcation precursor. Europhys Lett 94(6):60005

    Article  Google Scholar 

  11. McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5(5):e1000348

    Article  MathSciNet  Google Scholar 

  12. Hänggi P (2002) Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3):285–290

    Article  Google Scholar 

  13. McDonnell MD, Abbott D, Pearce CEM (2002) An analysis of noise enhanced information transmission in an array of comparators. Microelectron J 33:1079–1089

    Article  Google Scholar 

  14. McDonnell MD, Stocks NG (2009) Suprathreshold stochastic resonance. Scholarpedia 4(6):6508

    Google Scholar 

  15. Bennett M, Wiesenfeld K, Jaramillo F (2004) Stochastic resonance in hair cell mechanoelectrical transduction. Fluctuations Noise Lett 4(1):1–10

    Article  Google Scholar 

  16. Bulsara A, Hänggi P, Marchesoni F, Moss F, Shlesinger M (eds) (1993) Stochastic resonance in physics and biology. J Stat Phys 70:1–512

    Google Scholar 

  17. Longtin A, Chialvo DR (1998) Stochastic and deterministic resonances for excitable systems. Phys Rev Lett 81:4012

    Article  Google Scholar 

  18. Rappel W, Strogatz S (1994) Stochastic resonance without an external periodic force. Phys Rev E 50:3249

    Article  Google Scholar 

  19. Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78(5):775–778

    Article  MATH  MathSciNet  Google Scholar 

  20. Lindner B, Schimansky GL (2000) Coherence and stochastic resonance in a two -state system. Phys Rev E 61:6103–6110

    Article  Google Scholar 

  21. Neiman A et al (1999) Synchronization of the electrosensitive noisy cells in the paddlefish. Phys Rev Lett 82:660–663

    Article  Google Scholar 

  22. Mosekilde E, Sosnovtseva OV, Holstein-Rathlou NH (2003) Nonlinear phenomena in nephron–nephron interaction. In: Pikovsky A, Maistrenko Y (eds) Synchronization: theory and application. Kluwer, The Netherlands, pp 139–174

    Chapter  Google Scholar 

  23. Gang H, Ditzinger T, Ning CZ, Haken H (1993) Stochastic resonance without references external periodic force. Phys Rev Lett 71:807–810

    Article  Google Scholar 

  24. Scott AC (1975) The electrophysics of a nerve fiber. Rev Mod Phys 47:487–533

    Article  Google Scholar 

  25. Argentina M, Coullet P, Krinsky V (2000) Head-on collisions of wave in an excitable Fitzhugh-Nagumo system: a transition from wave annihilation to classical wave behavior. J Theor Biol 205:47–52

    Article  Google Scholar 

  26. Pei X, Bachmann K, Moss F (1995) The detection threshold, noise and stochastic resonance in the Fitzhugh-Nagumo neuron model. Phys Lett A 206:61–65

    Article  Google Scholar 

  27. Collins JJ, Chow CC, Imhoff TT (1995) Information measures quantifying aperiodic stochastic resonance. Phys Rev E52:R3321–R3324

    Google Scholar 

  28. Paydarfar D, Burkel DM (1995) Dysrhythmias of the respiratory oscillator. Chaos 5:18

    Article  Google Scholar 

  29. Jung P (1994) Threshold devices: fractal noise and neural talk. Phys Rev E50:2513–2522

    Google Scholar 

  30. Jung P (1995) Stochastic resonance and optimal design of threshold detectors. Phys Lett A 207:93–104

    Article  Google Scholar 

  31. Guckenheimer J, Kuehn C (2010) Homoclinic orbits of the Fitzhugh-Nagumo equation: bifurcations in the full system. SIAM J Appl Dyn Syst 9(1):138–153

    Article  MATH  MathSciNet  Google Scholar 

  32. Rankovi D (2011) Bifurcations of Fitzhugh-Nagumo excitable systems with chemical delayed coupling. Matematiqki vesnik 63(2):103–114

    Google Scholar 

  33. Bashkirtseva I, Ryashko L (2011) Analysis of excitability for the Fitzhugh-Nagumo model via a stochastic sensitivity function technique. Phys Rev E83:061109

    Google Scholar 

  34. Wolfe A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponent from a time series. Phys D 16:285–317

    Article  MathSciNet  Google Scholar 

  35. Miguel SM, Toral R (2000) Stochastic effects in physical systems. In: Tirapegui E, Martinez J, Tiemann R (eds) Instabilities and nonequilibrium structures VI. Kluwer, Dordrecht, pp 35–130

    Chapter  Google Scholar 

Download references

Acknowledgments

The work is supported by Natural Science Special Foundation Project of Chongqing Key Laboratory of Electronic Commerce and Supply Chain System(2012ECSC0213) and by key projects from Natural Science Foundation Project of CQ CSTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeju Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Song, L. Research on the new dynamics properties for a noise-induced excited system. Neural Comput & Applic 24, 521–529 (2014). https://doi.org/10.1007/s00521-012-1253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1253-2

Keywords

Navigation