Skip to main content
Log in

Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, the Group method of data handling (GMDH) network was utilized to predict the scour depth below pipelines. GMDH network was developed using back propagation. Input parameters that were considered as effective parameters on the scour depth included those of sediment size, geometry of pipeline, and approaching flow characteristics. Training and testing performances of the GMDH networks have been carried out using nondimensional data sets that were collected from the literature. These data sets are related to the two main situations of pipelines scour experiments namely clear-water and live-bed conditions. The testing results of performances were compared with the support vector machines (SVM) and existing empirical equations. The GMDH network indicated that using of back propagation produced lower error of scour depth prediction than those obtained using the SVM and empirical equations. Also, the effects of many input parameters on the scour depth have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. J Energy Conserv Manag 49(10):2588–2594

    Article  Google Scholar 

  2. Azamathulla HMd, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng ASCE 131(10):898–908

    Article  Google Scholar 

  3. Azamathulla HMd, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 38(8):689–698

    Article  Google Scholar 

  4. Azamathulla HMd, Ghani AA, Zakaria NA, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng ASCE 136(3):165–169

    Article  Google Scholar 

  5. Azamathulla HMd, Guven A, Demir YK (2011) Linear genetic programming to scour below submerged pipeline. Ocean Eng 38(8–9):995–1000

    Article  Google Scholar 

  6. Azamathulla HMd, Zakaria NA (2011) Prediction of scour below submerged pipeline crossing a river using ANN. IWA Water Sci Technol 63(10):2225–2230

    Article  Google Scholar 

  7. Ayoubloo MK, Azamathulla HMd, Jabbari E, Mahjoobi J (2011) Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows. Expert Syst Appl 38(8):10114–10123

    Article  Google Scholar 

  8. Brørs B (1999) Numerical modeling of flow and scour at pipelines. J Hydraul Eng 125–5:511–523

    Article  Google Scholar 

  9. Campbell C (2000) Kernel methods: a survey of current techniques. Neurocomputing 48:63–84

    Article  Google Scholar 

  10. Chao JL, Hennessy PV (1972) Local scour under ocean outfall pipe-lines. Water Pollut Control Federation 44(7):1443–1447

    Google Scholar 

  11. Chiew YM (1991) Prediction of maximum scour depth at submarine pipelines. J Hydraul Eng 117(4):452–466

    Article  Google Scholar 

  12. Chiew YM (1990) Mechanics of local scour around submarine pipelines. J Hydraul Eng 116–4:515–529

    Article  Google Scholar 

  13. Dey S, Singh NP (2007) Clear-water scour depth below underwater pipelines. J Hydro-Environ Res 1:157–162

    Article  Google Scholar 

  14. Debnath K, Chaudhuri S (2010) Laboratory experiments on local scour around cylinder for clay and clay–sand mixed beds. Eng Geol 111(12):51–61

    Article  Google Scholar 

  15. Dey S, Singh NP (2008) Clear-water scour below underwater pipelines under steady flow. J Hydraul Eng 134(5):588–600

    Article  Google Scholar 

  16. Ettema R (1980) Scour at bridge piers. Report No. 216, Deptartment of Civil Engineering, University of Auckland, Auckland, New Zealand

  17. Ettema R, Melville BW, Barkdoll B (1998) Scale effect in pier-scour experiments. J Hydraul Eng 124(6):639–642

    Article  Google Scholar 

  18. Etemad-Shahidi A, Yasa R, Kazeminezhad MH (2011) Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Appl Ocean Res 33:54–59

    Article  Google Scholar 

  19. Farlow SJ (ed) (1984) Self-organizing method in modeling: GMDH type algorithm. Marcel Dekker Inc, New York

    Google Scholar 

  20. Guven A, Azamathulla HMd (2012) Gene-expression programming for flip bucket spillway scour. Water Sci Technol 65(11):1982–1987

    Article  Google Scholar 

  21. Guven A, Azamathulla HMd, Gunal M (2012) A comparative study of predicting scour around a circular pile. ICE Marit Eng 165(1):31–40

    Article  Google Scholar 

  22. Guven A, Azamathulla HMd, Zakaria NA (2009) Linear genetic programming for prediction of circular pile scour. J Ocean Eng 36(12–13):985–991

    Article  Google Scholar 

  23. Guven A, Gunal M (2008) Genetic programming approach for prediction of local scour downstream hydraulic structures. J Irrig Drain Eng 134(2):241–249

    Article  Google Scholar 

  24. Guven A, Aytek A, Yuce MI, Aksoy H (2008) Genetic programming based empirical model for daily reference evapotranspiration estimation. Clean-Soil Air Water 36(10–11):905–912

    Article  Google Scholar 

  25. Guven A (2009) Linear genetic programming for time series modelling of daily flow rate. J Earth Syst Sci 118(2):137–146

    Article  Google Scholar 

  26. Hansen EA, Fredsøe J, Ye M (1986) Two-dimensional scour below pipelines. In: Proceedings of 5th international symposium on offshore mechanics and arctic engineering, pp 670–678

  27. Ibrahim A, Nalluri C (1986) Scour prediction around marine pipelines. In: Proceedings of the 5th international symposium on offshore mechanics and arctic engineering, pp 679–684

  28. Iba H, de Garis H (1996) Extending genetic programming with recombinative guidance. In: Angeline P, Kinnear K (eds) Advances in genetic programming 2. MIT Press, Cambridge

    Google Scholar 

  29. Ivahnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern SMC-1, pp 364–378

  30. Johnson PA (1992) Reliability-based pier scour engineering. J Hydraul Eng ASCE 118(10):1344–1357

    Article  Google Scholar 

  31. Kalantary F, Ardalan H, Nariman-Zadeh N (2009) An investigation on the Su-NSPT correlation using GMDH type neural networks and genetic algorithms. Eng Geol 104(1–2):144–155

    Article  Google Scholar 

  32. Kisi Ö, Guven A (2010) A machine code-based genetic programming for suspended sediment concentration estimation. Adv Eng Softw 41(7–8):939–945

    Article  MATH  Google Scholar 

  33. Kjeldsen SP, Gjørsvik O, Bringaker KG, Jacobsen J (1973) Local scour near offshore pipelines. In: Proceedings of the 2nd international conference on port and ocean engineering under arctic conditions, University of Iceland, pp 308–331

  34. Li F, Cheng L (1999) Numerical model for local scour under offshore pipelines. J Hydraul Eng 125(4):400–406

    Article  Google Scholar 

  35. Madala HR, Ivakhnenko AG (1994) Inductive learning algorithms for complex systems modeling. CRC Press, Boca Raton

    MATH  Google Scholar 

  36. Maza JA (1987) Introduction to river engineering. Advanced course on water resources management. Universitá Italiana per Stranieri, Perugia

    Google Scholar 

  37. Myrhaug D, Rue H (2003) Scour below pipelines and around vertical piles in random waves. Coast Eng 48(4):227–242

    Article  Google Scholar 

  38. Myrhaug D, Ong MC, Føien H, Gjengedal C, Leira BJ (2009) Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng 36:605–616

    Article  Google Scholar 

  39. Mehrara M, Moeini A, Ahrari M, Erfanifard A (2009) Investigating the efficiency in oil futures market based on GMDH approach. Expert Syst Appl 36(4):7479–7483

    Article  Google Scholar 

  40. Moncada-M AT, Aguirre-Pe J (1999) Scour below pipeline in river crossings. J Hydraul Eng 125(9):953–958

    Article  Google Scholar 

  41. Melville BW (1984) Live-bed scour at bridge piers. J Hydraul Eng ASCE 110(9):1234–1247

    Article  Google Scholar 

  42. Najafzadeh M (2009) Experimental and numerical study of local scour around a vertical pier in cohesive soils, Ms. Thesis, Shahid Bahonar University, Kerman, Iran

  43. Najafzadeh M, Barani Gh-A (2011) Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica Trans A Civil Eng 18(6):1207–1213

    Article  Google Scholar 

  44. Najafzadeh M, Barani G-A (2012) Discussion of “Genetic programming to predict river pipeline scour” by HMd Azamathulla and Aminuddin, Ab Ghani. J Pipeline Syst Eng Pract ASCE

  45. Najafzadeh M, Azamathulla HM (2012) Group method of data handling to predict scour depth around bridge piers. Neural Comput Appl. doi:10.1007/S00521-021-1160-6

  46. Najafzaded M, Barani G-A, Hessami Kermani MR (2012) Abutment scour in clear-water and live-bed conditions by GMDH network. Water Sci Technol. doi:10.2166/wst.2012.670

  47. Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc Inst Mech Eng Part B J Eng Manuf 217:779–790

    Article  Google Scholar 

  48. Onwubolu GC (2008) Design of hybrid differential evolution and group method in data handling networks for modeling and prediction. Inform Sci 178:3618–3634

    Article  Google Scholar 

  49. Sanchez E, Shibata T, Zadeh LA (1997) Genetic algorithms and fuzzy logic systems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  50. Sakaguchi A, Yamamoto T (2000) A GMDH network using back propagation and its application to a controller design. J IEEE 4:2691–2697

    Google Scholar 

  51. Sheppard DM, Miller W (2006) Live-bed local pier scour experiments. J Hydraul Eng 132(7):635–642

    Article  Google Scholar 

  52. Srinivasan D (2008) Energy demand prediction using GMDH networks. Neuro Comput 72(1–3):625–629

    Google Scholar 

  53. Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Statis Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  54. Toth E, Brandimarte L (2011) Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks. J Hydroinform 13(4):812–824

    Article  Google Scholar 

  55. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  56. Witczak M, Korbicz J, Mrugalski M, Patton R (2006) A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng Pract 14(6):671–683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Najafzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafzadeh, M., Barani, GA. & Azamathulla, H.M. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput & Applic 24, 629–635 (2014). https://doi.org/10.1007/s00521-012-1258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1258-x

Keywords

Navigation