Skip to main content
Log in

Distance approximation for two-phase test sample representation in face recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The two-phase test sample representation (TPTSR) scheme was proposed as a useful method for face recognition; however, the sample selection based on sparse representation in the first phase is not necessary. This is because the first phase only plays a role of course search in TPTSR, but the sparse representation method is suitable for fine classification. This paper proves that alternative nearest-neighbor selection criterions with higher efficiency can be used in the first phase of TPTSR without compromising the classification accuracy. Theoretical analysis and experimental results show that the original distance metric based on sparse representation in the first phase of the TPTSR can be approximated with a more straightforward metric while maintaining a comparable classification performance with the original TPTSR. Therefore, the computational load of the TPTSR can be greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kirby M, Sirovich L (1990) Application of the KL phase for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12:103–108

    Article  Google Scholar 

  2. Xu Y, Zhang D, Yang J, Yang J-Y (2008) An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71:1857–1865

    Article  Google Scholar 

  3. Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26:131–137

    Article  Google Scholar 

  4. Xu Y, Zhang D (2010) Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme. Opt Eng 49(3):037002

    Google Scholar 

  5. Park SW, Savvides M (2010) A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination. EURASIP J Adv Signal Process 2010:11

    Article  Google Scholar 

  6. Fan Z, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22:1119–1132

    Article  Google Scholar 

  7. Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res 8:1027–1061

    MATH  Google Scholar 

  8. Vural V, Fung G, Krishnapuram B, Dy JG, Rao B (2009) Using local dependencies within batches to improve large margin classifiers. J Mach Learn Res 10:183–206

    MATH  Google Scholar 

  9. Liu ZY, Chiu KC, Xu L (2003) Improved system for object detection and star/galaxy classification via local subspace analysis. Neural Netw 16(3–4):437–451

    Article  Google Scholar 

  10. Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19(10):2761–2773

    Article  MathSciNet  Google Scholar 

  11. Lai Z, Jin Z, Yang J, Wong WK (2010) Sparse local discriminant projections for feature extraction. In: ICPR, pp 926–929

  12. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. In: IEEE transactions on neural network, pp 1031–1044

  13. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  14. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Supervised dictionary learning. In: Advances in neural information processing systems (NIPS)

  15. Shi Y, Dai DQ, Liu CC, Yan H (2009) Sparse discriminant analysis for breast cancer biomarker identification and classification. Prog Nat Sci 19:1635–1641

    Article  Google Scholar 

  16. Dikmen M, Huang T (2008) Robust estimation of foreground in surveillance videos by sparse error estimation. In: International conference on pattern recognition

  17. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: IEEE international conference on computer vision and pattern recognition, pp. 2790–2797

  18. Rao S, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In: IEEE international conference on computer vision and pattern recognition, pp 1–8

  19. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: ICCV

  20. Casasent D (1984) Unified synthetic discriminant function computational formulation. Appl Opt 23:1620–1627

    Article  Google Scholar 

  21. Li SZ (1998) Face recognition based on nearest linear combinations. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp 839–844

  22. Li SZ, Lu J (1999) Face recognition using nearest feature line method. IEEE Trans Neural Netw 10:439–443

    Article  Google Scholar 

  23. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. In: IEEE Transactions on Circuits and Systems for Video Technology, vol 21

  24. Zhang L (2011) Sparse representation or collaborative representation: which helps face recognition? In: ICCV

  25. Breu H, Gil J, Kirkpatrick D, Werman M (1995) Linear time Euclidean distance transform algorithms. IEEE Trans Pattern Anal Mach Intell 17:529–533

    Article  Google Scholar 

  26. Krause EF (1987) Taxicab geometry. Dover, NY

    Google Scholar 

  27. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  28. Minkowski H (1953) Geometrie der Zahlen. Chelsea, New York

    MATH  Google Scholar 

  29. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.in

  30. Available: http://cobweb.ecn.purdue.edu/~aleix/aleix-face-DB.html.in

  31. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    Article  Google Scholar 

  32. Phillips PJ The facial recognition technology (FERET) database. Available: http://www.itl.nist.gov/iad/humanid/feret/feret-master.html

  33. Tumanski S (2006) Principles of electrical measurement. Taylor & Francis Group, New York

    Book  Google Scholar 

  34. Xu Y, Jin Z (2008) Down-sampling face images and low-resolution face recognition. In: 3rd International conference on innovative computing, information and control, pp 392–395

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wu, N. Distance approximation for two-phase test sample representation in face recognition. Neural Comput & Applic 24, 1341–1353 (2014). https://doi.org/10.1007/s00521-013-1352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1352-8

Keywords

Navigation