Skip to main content

Advertisement

Log in

Adaptive k-means clustering algorithm for MR breast image segmentation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Image segmentation is vital for meaningful analysis and interpretation of the medical images. The most popular method for clustering is k-means clustering. This article presents a new approach intended to provide more reliable magnetic resonance (MR) breast image segmentation that is based on adaptation to identify target objects through an optimization methodology that maintains the optimum result during iterations. The proposed approach improves and enhances the effectiveness and efficiency of the traditional k-means clustering algorithm. The performance of the presented approach was evaluated using various tests and different MR breast images. The experimental results demonstrate that the overall accuracy provided by the proposed adaptive k-means approach is superior to the standard k-means clustering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Cancer Society (2006) Breast cancer facts and figures 2005:1–28

  2. Boyle P, Levin B (2008) World CanCer report. International Agency for Research on Cancer, Lyon

    Google Scholar 

  3. Winsberg F, Elkin M, Macy J, Bordaz V, Weymouth W (1967) Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis. Radiology 89(2):211–215

    Article  Google Scholar 

  4. Birdwell RL, Ikeda DM, OShaughnessy KD, Sickles EA (2001) Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection. Radiology 219(1):192–202

    Article  Google Scholar 

  5. Freer TW, Ulissey MJ (2001) Screening mammography with computer-aided detection: prospective study of 12860 patients in a community breast center. Radiology 220:781–786

    Article  Google Scholar 

  6. Domnguez AR, Nandi AK (2009) Toward breast cancer diagnosis based on automated segmentation of masses in mammograms Pattern Recognition 42(6):1138–1148

  7. Gonzalez RC, Woods RE (2007) Digital image processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Nakib A, Oulhadj H, Siarry P (2007) Image histogram thresholding based on multiobjective optimization. Sig Process 87(11):2516–2534

    Article  MATH  Google Scholar 

  9. Oliver A, Freixenet J, Mart J, Prez E, Pont J, Denton ER, Zwiggelaar R (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14(2):87–110

    Article  Google Scholar 

  10. Bong CW, Rajeswari M (2010) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Cybern Intell Syst CIS 11(4):3271–3282

    Google Scholar 

  11. Hassanien AE, Al-Qaheri H, El-Dahshan EA (2011) Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network. Appl Soft Comput 11(2):2035–2041

    Article  Google Scholar 

  12. Chin-Wei B, Rajeswari M (2010) Multiobjective optimization approaches in image segmentation the directions and challenges. Int J Adv Soft Comput Appl 2(1):2074–8523

    Google Scholar 

  13. Moftah HM, Hassanien AE, Shoman M (2010) 3D brain tumor segmentation scheme using K-mean clustering and connected component labeling algorithms. The 10th IEEE international conference in intelligent design and application (ISDA2010), Cairo, pp 320–324

  14. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  15. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  16. Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 21(5):450–465

    Article  Google Scholar 

  17. Duda R, Hart P (1973) Pattern classification and scene analysis. Wiley Interscience, New York

    MATH  Google Scholar 

  18. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley symposium on mathematical statistics and probability. University of California Press, vol 1, pp 281–297

  19. Kaufman L, Rousseeuw PJ (1987) Clustering by means of Medoids. In: Dodge Y (eds) Statistical data analysis based on the L1-norm and related methods. North-Holland, Amsterdam, pp 405–416

    Google Scholar 

  20. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  21. Saha S, Bandyopadhyay S (2010) A symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recogn 43(3):738–751

    Article  MATH  Google Scholar 

  22. Chao WH, Chen YY, Cho CW, Lin SH, Shih YY, Tsang S (2008) Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree. J Neurosci Methods 175(2):206–217

    Article  Google Scholar 

  23. Cheng KS, Lin JS, Mao CW (1996) The application of competitive Hopfield neural network to medical image segmentation. IEEE Trans Med Imag 4(15):560–567

    Article  Google Scholar 

  24. Chaira T, Ray AK (2003) Segmentation using fuzzy divergence. Pattern Recogn Lett 24(12):1837–1844

    Article  Google Scholar 

  25. Tobias OJ, Seara R (2002) Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans Image Process 11(12):1457–1465

    Article  Google Scholar 

  26. Zhang Z, Zhang S, Zhang CX, Chen YZ (2006) SVM for density estimation and application to medical image segmentation. J Zhejiang Univ Sci B 7(5):365–372

    Article  Google Scholar 

  27. Kang D, Shin SY, Sung CO, Kim JY, Pack JK, Choi HD (2007) An improved method of breast MRI segmentation with Simplified K-means clustered images. RACS ’11 Proceedings of the 2011 ACM symposium on research in applied computation, pp 226–231

  28. Patel BC, Sinha GR (2011) Comparative performance evaluation of segmentation methods in breast cancer images. Int J Mach Intell 3(3):130–133

    Article  Google Scholar 

  29. Hassanien AE, Kim TH (2012) Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J Appl Logic 10(4):277–284

    Article  MathSciNet  Google Scholar 

  30. Al-Faris AQ, Ngah UK, Isa NA, Shuaib IL (2012) Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering. The 17th online world conference on soft computing in industrial applications (WSC17), December 03–14, 2012

  31. Ertas G, Glr H, Osman O, Uan ON, Tunaci M, Dursun M (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput Biol Med 38(1):116–126

    Article  Google Scholar 

  32. Preim U, Glaer S, Preim B, Fischbach F, Ricke J (2012) Computer-aided diagnosis in breast DCE-MRI Quantification of the heterogeneity of breast lesions. Eur J Radiol 81(7):1532–1538

    Article  Google Scholar 

  33. Li X, Dawant BM, Welch EB, Chakravarthy AB, Freehardt D, Mayer I, Kelley M, Meszoely I, Gore JC, Yankeelov TE (2009)A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magn Reson Imaging 27(9):1258–1270

    Article  Google Scholar 

  34. Wei CH, Li Y, Huang PJ, Gwo CY, Harms SE (2012) Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images. Eur J Radiol 81(4):e618–e624

    Article  Google Scholar 

  35. Joshi N, Bond S, Brady M (2010) The segmentation of colorectal MRI images. Med Image Anal 14(4):494–509

    Article  Google Scholar 

  36. Lucht R, Delorme S, Brix G (2002) NNeural network-based segmentation of dynamic MR mammographic images. Magn Reson Imaging 20(2):147–154

    Article  Google Scholar 

  37. Chen JH, Chan S, Yeh DC, Fwu PT, Lin M, Su MY (2013) Response of bilateral breasts to the endogenous hormonal fluctuation in a menstrual cycle evaluated using 3D MRI. Magn Reson Imaging 31(4):538–544

    Article  MATH  Google Scholar 

  38. Kannan SR, Ramathilagam S, Devi R, Sathya A (2011) Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 38(4):4382–4389

    Article  Google Scholar 

  39. Betanzosa AA, Varelaa BA, Martnez AC (2000) UAnalysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images. Image Vision Comput 18(13):1045–1054

    Article  Google Scholar 

  40. Ojola T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  41. Ojola T, Pietikainen M (1999) Unsupervised texture segmentation using feature distribution. Pattern Recogn 32(3):447–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moftah, H.M., Azar, A.T., Al-Shammari, E.T. et al. Adaptive k-means clustering algorithm for MR breast image segmentation. Neural Comput & Applic 24, 1917–1928 (2014). https://doi.org/10.1007/s00521-013-1437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1437-4

Keywords

Navigation