Skip to main content
Log in

Advanced learning methods and exponent regularization applied to a high order neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

High order neural networks (HONNs) are neural networks which employ neurons that combine their inputs non-linearly. The high order network with exponential synaptic links (HONEST) network is a HONN that uses neurons with product units and adaptable exponents. This study examines the use of several advanced learning methods to train the HONEST network: resilient propagation, conjugate gradient, scaled conjugate gradient (SCG), and the Levenberg–Marquardt method. Using a collection of 32 widely-used benchmark datasets, we compare the mean squared error (MSE) performance of the HONEST network across the four algorithms, in addition to backpropagation, and find the SCG method to produce the best performance to a statistically significant extent. Additionally, we investigate the use of a regularization term in the error function, to smooth the magnitudes of the network exponents and nudge the network towards smaller exponents. We find that the use of regularization reduces exponent magnitudes without compromising test set MSE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rumelhart DE, Hinton GE, McClelland JL (1986) A general framework for parallel distributed processing. Parallel Distrib Process 1(2):45–76

    Google Scholar 

  2. Shin Y, Ghosh J (1991) The pi–sigma network: an efficient higher-order neural network for pattern classification and function approximation. In: Proceedings of the international joint conference on neural networks, IJCNN-91, vol 1, pp 13–18

  3. Durbin R, Rumelhart DE (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1):133–142

    Article  Google Scholar 

  4. Fallahnezhad M, Moradi MH, Zaferanlouei S (2011) A hybrid higher order neural classifier for handling classification problems. Expert Syst Appl 38(1):386–393

    Article  Google Scholar 

  5. Abdelbar AM, Tagliarini GA (1996) HONEST: a new high order feedforward neural network. In: IEEE international conference on neural networks, vol 2, pp 1257–1262

  6. Narayan S (1993) ExpoNet: A generalization of the multi-layer perceptron model. In: Proceedings of the World Congress on Neural Networks, vol 3, pp 494–497

  7. Rovithakis G, Chalkiadakis I, Zervakis M (2004) High-order neural network structure selection for function approximation applications using genetic algorithms. IEEE Trans Syst Man Cybern B Cybern 34(1):150–158

    Article  Google Scholar 

  8. Martínez-Estudillo AC, Martínez-Estudillo FJ, Herváz-Martínez C, García-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19(4):477–486

    Article  MATH  Google Scholar 

  9. Giles CL, Maxwell T (1987) Learning, invariance, and generalization in high-order neural networks. Appl Opt 26(23):4972–4978

    Article  Google Scholar 

  10. Abdelbar AM (1998) Achieving superior generalisation with a high order neural network. Neural Comput Appl 7(2):141–146

    Article  MATH  Google Scholar 

  11. Abdelbar AM, Attia S, Tagliarini GA (2002) A hybridization of Bayesian and neural learning. Neurocomputing 48(1):443–453

    Article  MATH  Google Scholar 

  12. Tsai HC (2009) Hybrid high order neural networks. Appl Soft Comput 9(3):874–881

    Article  Google Scholar 

  13. Tsai HC (2010) Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization. Expert Syst Appl 37(2):1104–1112

    Article  Google Scholar 

  14. Van Den Bergh F, Engelbrecht AP (2001) Training product unit networks using cooperative particle swarm optimisers. In: Proceedings of the international joint conference on neural networks, IJCNN-01, vol 1, pp 126–131

  15. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE international conference on neural networks, pp 586–591

  16. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  MATH  MathSciNet  Google Scholar 

  17. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533

    Article  Google Scholar 

  18. Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    MATH  MathSciNet  Google Scholar 

  19. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MATH  MathSciNet  Google Scholar 

  20. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  21. Suratgar AA, Tavakoli MB, Hoseinabadi A (2005) Modified Levenberg–Marquardt method for neural networks training. World Acad Sci Eng Technol 6:46–48

    Google Scholar 

  22. Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 5:1035

    MATH  Google Scholar 

  23. Tsai HC, Wu YW, Tyan YY (2013) Programming squat wall strengths and tuning associated codes with pruned modular neural network. Neural Comput Appl 23(3–4):741–749

    Article  Google Scholar 

  24. Ivakhnenko A (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1(4):364–378

    Article  MathSciNet  Google Scholar 

  25. Puig V, Witczak M, Nejjari F, Quevedo J, Korbicz J (2007) A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test. Eng Appl Artif Intell 20(7):886–897

    Article  Google Scholar 

  26. Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD thesis, Committee on Applied Math, Harvard University, Cambridge, MA

  27. Werbos PJ (1994) The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. Wiley-Interscience, New York

    Google Scholar 

  28. Chauvin Y, Rumelhart DE (1995) Backpropagation: theory, architectures, and applications. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  29. Werbos P (1968) The elements of intelligence. Cybernetica (Namur) 3:131–178

    Google Scholar 

  30. Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560

    Article  Google Scholar 

  31. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  32. Andrei N (2007) Scaled conjugate gradient algorithms for unconstrained optimization. Comput Optim Appl 38:401–416

    Article  MATH  MathSciNet  Google Scholar 

  33. Falas T, Stafylopatis A (2005) Implementing temporal-difference learning with the scaled conjugate gradient algorithm. Neural Process Lett 22:361–375

    Article  Google Scholar 

  34. Lundén J, Koivunen V (2007) Scaled conjugate gradient method for radar pulse modulation estimation. In: IEEE international conference on acoustics, speech, and signal processing, vol 2, pp 297–300

  35. Mehrotra K, Mohan CK, Ranka S (1996) Elements of artificial neural networks. MIT press, Cambridge

    Google Scholar 

  36. Haykin SS (2009) Neural networks and learning machines. Prentice Hall, Upper Saddle River

    Google Scholar 

  37. Frank A, Asuncion A (2012) UCI machine learning repository. http://archive.ics.uci.edu/ml/

  38. Pearson K (1901) Principal components analysis. Lond Edinb Dublin Philos Mag J 6(2):566

    Google Scholar 

  39. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18

    Article  Google Scholar 

  40. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  41. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mac Learn Res 7:1–30

    MATH  Google Scholar 

  42. García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9(66):2677–2694

    MATH  Google Scholar 

  43. Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci 87(23):9193–9196

    Article  MATH  Google Scholar 

  44. Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808

    Article  Google Scholar 

  45. Tsanas A, Xifara A (2012) Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build 49:560–567

    Article  Google Scholar 

  46. Gil D, Girela JL, De Juan J, Jose Gomez-Torres M, Johnsson M (2012) Predicting seminal quality with artificial intelligence methods. Expert Syst Appl 39(16):12,564–12,573

    Article  Google Scholar 

  47. Elter M, Schulz-Wendtland R, Wittenberg T (2007) The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med Phys 34(11):4164–4172

    Article  Google Scholar 

  48. Hwang SJ, Fang WH, Lee HJ, Yu HW (2001) Analytical model for predicting shear strength of squat walls. J Struct Eng 127(1):43–50

    Article  Google Scholar 

  49. Yeh IC, Yang KJ, Ting TM (2009) Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst Appl 36(3):5866–5871

    Article  Google Scholar 

  50. Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst 47(4):547–553

    Article  Google Scholar 

Download references

Acknowledgments

The partial support of a Brandon University Research Grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam El-Nabarawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Nabarawy, I., Abdelbar, A.M. Advanced learning methods and exponent regularization applied to a high order neural network. Neural Comput & Applic 25, 897–910 (2014). https://doi.org/10.1007/s00521-014-1563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1563-7

Keywords

Navigation