Skip to main content
Log in

Enhancing sparsity via full rank decomposition for robust face recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a fast and robust face recognition method named enhancing sparsity via full rank decomposition. The proposed method first represents the test sample as a linear combination of the training data as the same as sparse representation, then make a full rank decomposition of the training data matrix. We obtain the generalized inverse of the training data matrix and then solve the general solution of the linear equation directly. For obtaining the optimum solution to represent the test sample, we use the least square method to solve it. We classify the test sample into the class which has the minimal reconstruction error. Our method can solve the optimum solution of the linear equation, and it is more suitable for face recognition than sparse representation classifier. The extensive experimental results on publicly available face databases demonstrate the effectiveness of the proposed method for face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Howland P, Wang J, Park H (2006) Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recogn 39:277–287

    Article  Google Scholar 

  2. Xu Y, Zhang D, Jin Z, Li M, Yang J-Y (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recogn 39:1026–1033

    Article  MATH  Google Scholar 

  3. Lai ZH, Wong WK, Jin Z, Yang J, Xu Y (2012) Sparse approximation to the eigensubspace for discrimination. IEEE Trans Neural Netw Learn Syst 23:1948–1960

    Article  Google Scholar 

  4. Jiang X, Mandal B, Kot A (2008) Eigenfeature regularization and extraction in face recognition. IEEE Trans Pattern Anal Mach Intell 30:383–394

    Article  Google Scholar 

  5. Xu Y, Zhang D, Yang J-Y (2010) A feature extraction method for use with bimodal biometrics. Pattern Recogn 43:1106–1115

    Article  MATH  Google Scholar 

  6. Belhumeur PN, Hespanha J, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19:711–720

    Article  Google Scholar 

  7. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86

    Article  Google Scholar 

  8. Roweis S, Saul L (2000) Laplacian eigenmaps and spectral techniques for embedding. Science 290:2323–2326

    Article  Google Scholar 

  9. He XF, Yan SC, Hu YX, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27:328–340

    Article  Google Scholar 

  10. Levin A, Shashua A (2002) Principal component analysis over continuous subspaces and intersection of half-spaces. In: Proceedings of European conference computer vision. Springer, Berlin

  11. Fan ZZ, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22:1119–1132

    Article  Google Scholar 

  12. Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26:131–137

    Article  Google Scholar 

  13. Zhou T, Tao D, Wu X (2011) Manifold elastic net: a unified framework for sparse dimension reduction. Data Min Knowl Disc 22:340–371

    Article  MathSciNet  MATH  Google Scholar 

  14. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56:2346–2356

    Article  MathSciNet  Google Scholar 

  15. Poggio T, Girosi F (1998) A sparse representation for function approximation. Neural Comput 10:1445–1454

    Article  Google Scholar 

  16. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98:1031–1044

    Article  Google Scholar 

  17. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  18. Duda R, Hart P (2001) and D. Stork. Pattern Classification, second ed. John Wiley & Sons

    Google Scholar 

  19. Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. Proceedings of the IEEE international conference computer vision and pattern recognition, pp 11–18

  20. Gao S, Tsang I, Chia L-T (2010) Kernel sparse representation for image classification and face recognition. In: ECCV

  21. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR

  22. He R, Zheng W-S, Hu B-G, Kong X-W (2011) Nonnegative sparse coding for discriminative semi-supervised learning. In: CVPR

  23. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: CVPR

  24. Guo S, Wang Z, Ruan Q (2013) Enhancing sparsity via l p(0<p<1) minimization for robust face recognition. Neurocomputing 99:592–602

    Article  Google Scholar 

  25. Donoho D (2006) For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59:797–829

    Article  MathSciNet  MATH  Google Scholar 

  26. Cande’s E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59:1207–1223

    Article  MathSciNet  Google Scholar 

  27. Cande’s EJ, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted l 1 minimization. J Fourier Anal Appl 14:877–905

    Article  MathSciNet  Google Scholar 

  28. Zhang L, Yang M, Feng XC (2011) Sparse representation or collaborative representation: which helps face recognition? In: ICCV

  29. http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

  30. Samaria S, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In Proceedings of the 2nd IEEE international workshop applications of Computer Vision, Sarasota, FL

  31. Martinez A, Benavente R (1998) The AR face database, CVC technical report 24

  32. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    Article  Google Scholar 

  33. Kim MY (2013) Accelerated max-margin multiple kernel learning. Appl Intell 38:45–57

    Article  Google Scholar 

  34. Hoyer PO (2004) Nonnegative matrix factorization with sparseness constraints. J Mach Learn Res 5:1457–1469

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This article is partly supported by the Natural Science Foundation of China (Grant Nos. 61203376, 61375012, 61263032, and 61362031), the General Research Fund of Research Grants Council of Hong Kong (Project No. 531708), the China Postdoctoral Science Foundation under Project 2012M510958 and 2013T60370, the Guangdong Natural Science Foundation under Project S2012040007289, and Shenzhen Municipal Science and Technology Innovation Council (Nos. JC201005260122A, JCYJ201206 13153352732 and JCYJ20120613134843060, JCYJ20130329152024199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Cui, J. & Fang, X. Enhancing sparsity via full rank decomposition for robust face recognition. Neural Comput & Applic 25, 1043–1052 (2014). https://doi.org/10.1007/s00521-014-1582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1582-4

Keywords

Navigation