Skip to main content
Log in

Invasive weed classification

  • Advances in Intelligent Data Processing and Analysis
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Invasive weed optimization (IWO) is a recently published heuristic optimization technique that resembles other evolutionary optimization methods. This paper proposes a new classification technique based on the IWO algorithm, called the invasive weed classification (IWC), to face the problem of pattern classification for multi-class datasets. The aim of the IWC is to find the set of the positions of the class centers that minimize the multi-objective function, i.e., the optimal positions of the class centers. The classification performance is computed as the percentage of misclassified patterns in the testing dataset achieved by the best plants in terms of fitness performance. The performance of the IWC algorithm, both in terms of classification accuracy and training time, is compared with other commonly used classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams RP, Ghahramani Z (2009) Archipelago: nonparametric bayesian semi-supervised learning. In: Danyluk AP, Bottou L, Littman ML (eds) Proceedings of the 26th international conference on machine learning ICML. ACM, Montreal, p 1

  2. Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63(2):503–527

    Article  Google Scholar 

  3. An A (2003) Learning classification rules from data. Comput Math Appl 45:737–748

    Article  MATH  MathSciNet  Google Scholar 

  4. Bache K, Lichman M (2013) UCI machine learning repository. Technical report, University of California, School of Information and Computer Science, Irvine, CA

  5. Bailey T, Jain A (1978) A note on distance-weighted k-nearest neighbor rules. IEEE Trans Syst Man Cybern 8:311–313

    Article  MATH  Google Scholar 

  6. Bandyopadhyay S, Murthy C, Pal S (1995) Pattern classification with genetic algorithms. Pattern Recogn Lett 16:801–808

    Article  Google Scholar 

  7. Bandyopadhyay S, Murthy C, Pal SK (1998) Pattern classification using genetic algorithms: determination of H. Pattern Recogn Lett 19(13):1171–1181

    Article  MATH  Google Scholar 

  8. Baraldi P, Razavi-Far R, Zio E (2010). A method for estimating the confidence in the identification of nuclear transients by a bagged ensemble of FCM classifiers. In: Proc. NPIC&HMIT, pp. 283–293. Las Vegas, NV

  9. Baraldi P, Razavi-Far R, Zio E (2011) Bagged ensemble of fcm classifier for nuclear transient identification. Ann Nucl Energy 38(5):1161–1171

    Article  Google Scholar 

  10. Baraldi P, Razavi-Far R, Zio E (2011) Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions. Reliab Eng Syst Saf 96(4):480–488

    Article  Google Scholar 

  11. Bishop C (1995) Neural networks for pattern recognition. Oxford University, Oxford

    Google Scholar 

  12. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont

    MATH  Google Scholar 

  13. Cervantes A, Galvan I, Isasi P (2009) Ampso: a new particle swarm method for nearest neighborhood classification. IEEE Trans Syst Man Cybern B Cybern 39(5):1082–1091

    Article  Google Scholar 

  14. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

  15. Chi-Yang T, Yeh SW (2008) A multiple objective particle swarm optimization approach for inventory classification. Int J Prod Econ 114:656–666

    Article  Google Scholar 

  16. Chowdhury A, Bose B, Das S (2011) Automatic clustering based on invasive weed optimization algorithm. In: Proceedings of the second international conference on Swarm, Evolutionary, and Memetic Computing (SEMCCO’11), vol. Volume II, pp 105–112

  17. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  18. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT 13(1):21–27

    Article  MATH  Google Scholar 

  19. Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331

    Article  MATH  MathSciNet  Google Scholar 

  20. Efron B, Tibshirani R (1995) Improvements on cross-validation: the bootstrap method. J Am Stat Assoc 92(43):548–560

    MathSciNet  Google Scholar 

  21. De Falco I, Della Cioppa A, Tarantino E (2006) Evaluation of particle swarm optimization effectiveness in classification. In: Bloch I, Petrosino A, Tettamanzi AGB (eds) Fuzzy logic and applications, Lecture notes in computer science, vol 3849. Springer, Berlin, Heidelberg, pp 164–171

  22. Falco ID, Cioppa AD, Tarontino E (2007) Facing classification problems with particle swarm optimization. Appl Soft Comput 7:652–658

    Article  Google Scholar 

  23. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  24. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29:131–163

    Article  MATH  Google Scholar 

  25. Ghalenoei M, Hajimirsadeghi H, Lucas C (2009). Discrete invasive weed optimization algorithm: application to cooperative multiple task assignment of uavs. In: Proceedings of the IEEE conference on decision and control, pp 1665–1670

  26. Green T, Izadi-Zamanabadi R, Razavi-Far R, Niemann H (2014) Plant-wide dynamic and static optimisation of supermarket refrigeration systems. Int J Refrig 38:106–117

    Article  Google Scholar 

  27. Green T, Razavi-Far R, Izadi-Zamanazabdi R, Niemann H (2012) Plant-wide performance optimization, the refrigeration system case. In: IEEE multi-conference on systems and control (MSC). Dubrovnik, Croatia, pp 208–213

  28. Grzymala-Busse JW (1992) LERS-A system for learning from examples based on rough sets. In: Słowiński R (ed) Intelligent decision support: handbook of applications and advances of rough sets theory. Theory and Decision Library, vol 11. Springer, Netherlands, pp 3–18

  29. Hajimirsadeghi H, Ghazanfari A, Rahimi-Kian A, Lucas C (2009) Cooperative coevolutionary invasive weed optimization and its application to nash equilibrium search in electricity markets. In: World congress on nature and biologically inspired computing, NABIC, pp 1532–1535

  30. Hajimirsadeghi H, Lucas C (2009) A hybrid iwo/pso algorithm for fast and global optimization. In: IEEE Eurocon, pp 1964–1971

  31. Hansen L, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  32. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer, Berlin, New York

    Google Scholar 

  33. He X, Wang Z, Jin C, Zheng Y, Xue X (2012) A simplified multi-class support vector machine with reduced dual optimization. Pattern Recogn Lett 33(1):71–82

    Article  Google Scholar 

  34. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  35. Kittler J, Hatef M, Duin R, Mates J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  36. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence, vol 2, IJCAI 95Morgan Kaufmann, Montréal Québec, Canada, pp 1137–1145

  37. Kuncheva L (2005) Real medical datasets. Technical report, School of Informatics. University of Wales, Bangor, UK

  38. Kuncheva L, Hadjitodorov S (2004) Using diversity in cluster ensembles. In: IEEE international conference on systems, man and cybernetics, 2004, vol 2, pp 1214–1219

  39. Kuncheva L, Whitaker C (2002) Using diversity with three variants of boosting: aggressive, conservative, and inverse. In: Roli F, Kittler J (eds) Multiple classifier systems, Lecture notes in computer science, vol 2364. Springer, Berlin, pp 81–90

    Chapter  Google Scholar 

  40. Kuncheva LI, Vetrov DP (2006) Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans Pattern Anal Mach Intell 28(11):1798–1808

    Article  Google Scholar 

  41. Li B, Liu PY, Hu RX, Mi SS, Fu JP (2012) Fuzzy lattice classifier and its application to bearing fault diagnosis. Appl Soft Comput 12(6):1708–1719

    Article  Google Scholar 

  42. McGovern A, Jensen D (2008) Optimistic pruning for multiple instance learning. Pattern Recogn Lett 29(9):1252–1260

    Article  Google Scholar 

  43. McLachlan G (2004) Discriminant analysis and statistical pattern recognition. Wiley Interscience, London

    MATH  Google Scholar 

  44. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366

    Article  Google Scholar 

  45. Mehrabian AR, Yousefi-Koma A (2007) Optimal positioning of piezoelectric actuators on a smart fin using bio-inspired algorithms. Aerosp Sci Technol 11:174–182

    Article  Google Scholar 

  46. Mitrakis N, Theocharis J, Petridis V (2008) A multilayered neuro-fuzzy classifier with self-organizing properties. Fuzzy Sets Syst 159(23):3132–3159

    Article  MATH  MathSciNet  Google Scholar 

  47. Nikoofard A, Hajimirsadeghi H, Rahimi-Kian A, Lucas C (2012) Multiobjective invasive weed optimization: application to analysis of pareto improvement models in electricity markets. Appl Soft Comput 12:100–112

    Article  Google Scholar 

  48. Nouaouria N, Boukadoum M (2010) Particle swarm classification for high dimensional datasets. In: Proceedings of 22th international IEEE conference on tools with artificial intelligence IEEE-ICTAI, vol 1, Arras, France, pp 87–93

  49. Nouaouria N, Boukadoum M (2011) A particle swarm optimization approach to mixed attribute data-set classification. In: Proceedings of IEEE symposiumon swarm intelligence. Paris, France, pp 44–51

  50. Nouaouria N, Boukadoum M, Proulx R (2013) Particle swarm classification: a survey and positioning. Pattern Recogn 46(7):2028–2044

    Article  Google Scholar 

  51. Omran M, Al-Sharhan A (2007) Barebones particle swarm methods for unsupervised image classification. In: Proceedings of IEEE congress on evolutionary computation (CEC). Singapore, pp 3247–3252

  52. ONeill M, Brabazon A (2006) Self-organizing swarm (SOSwarm): a particle swarm algorithm for unsupervised learning. In: Proceedings of IEEE congress on evolutionary computation. Vancouver, BC, Canada, pp 634–639

  53. Owechko Y, Medasani S, Srinivasa N (2004) Classifier swarms for human detection in infrared imagery. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW04)

  54. Rad H, Lucas C (2007) A recommender system based on invasive weed optimization algorithm. In: IEEE congress on evolutionary computation, CEC, pp 4297–4304

  55. Razavi-Far R, Baraldi P, Zio E (2012) Dynamic weighting ensembles for incremental learning and diagnosing new concept class faults in nuclear power systems. IEEE Trans Nucl Sci 59(5):2520–2530

    Article  Google Scholar 

  56. Razavi-Far R, Baraldi P, Zio E (2012) Ensemble of neural networks for detection and classification of faults in nuclear power systems. In: Proceedings of 10th international FLINS conference on uncertainty modeling in knowledge engineering and decision making, world scientific proc. ser. on computer engineering and information science, vol 7. Istanbul, Turkey, pp 1202–1207

  57. Razavi-Far R, Davilu H, Palade V, Lucas C (2009) Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomput J 72(13–15):2939–2951

    Article  Google Scholar 

  58. Razavi-Far R, Davilu H, Palade V, Lucas C (2009) Neuro-fuzzy based fault diagnosis of a steam generator. In: 7-th IFAC conference on fault detection, supervision and safety of technical processes, international federation of automatic control (IFAC). Barcelona, Spain, pp 1180–1185

  59. Razavi-Far R, Kinnaert M (2012) Incremental design of a decision system for residual evaluation: a wind turbine application. In: 8-th IFAC conference on fault detection, supervision and safety of technical processes, international federation of automatic control. Mexico City, pp 343–348

  60. Razavi-Far R, Kinnaert M (2013) A multiple observers and dynamic weighting ensembles scheme for diagnosing new class faults in wind turbines. Control Eng Pract 21(9):1165–1177

    Article  Google Scholar 

  61. Razavi-Far R, Palade V, Sun J (2013) Optimizing performance of a refrigeration system using an invasive weed optimization algorithm. In: Combinations of intelligent methods and applications, Springer series book: smart innovation, systems and technologies. In: Proceedings of CIMA12—the 3rd international workshop on combinations of intelligent methods and applications, in conjunction with the 22nd European conference on artificial intelligence—ECAI, vol 23. Springer, Montpellier, France, pp 79–93

  62. Razavi-Far R, Palade V, Zio E (2014) Optimal detection of new classes of faults by an invasive weed optimization method. In: Proceedings of the IEEE World Congress on Computational Intelligence - IEEE WCCI. Beijing, China

  63. Razavi-Far R, Zio E, Palade V (2014) Efficient residuals pre-processing for diagnosing multi-class faults in a doubly fed induction generator, under missing data scenarios. Expert Syst Appl 41(14):6386–6399

    Article  Google Scholar 

  64. Rodriguez J, Perez A, Lozano J (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32(3):569–575

    Article  Google Scholar 

  65. Schaffe C (1993) Selecting a classification method by cross-validation. Mach Learn 13:135–143

    Google Scholar 

  66. Serapiao A, Mendes J (2009) Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm. In: Chien B (ed) Proceedings of IEA/AIE, LNAI5579. Springer, Berlin/Heidelberg, pp 301–310

    Google Scholar 

  67. Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Parallel Comput 30:767–783

    Article  Google Scholar 

  68. Tewolde G, Hanna D (2007) Particle swarm optimization for classification of breast cancer data using single and multi surface methods of data separation. In: Proceedings of IEEE IT, pp 443–446

  69. Zhang H (2004) The optimality of naive bayes. In: Barr V, Markov Z (eds) FLAIRS Conference: Proceedings of the 7th international florida artificial intelligence research society conference. AAAI Press, Miami Beach, Florida, USA, pp 562–567

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Palade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi-Far, R., Palade, V. & Zio, E. Invasive weed classification. Neural Comput & Applic 26, 525–539 (2015). https://doi.org/10.1007/s00521-014-1656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1656-3

Keywords

Navigation