Skip to main content
Log in

Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The translation of brain activities into signals in brain–computer interface (BCI) systems requires a robust and accurate classification to develop a communication system for motor disabled people. In BCIs, motor imagery (MI) tasks generate brain activities, which are generally measured by electroencephalogram (EEG) signals. The aim of this research was to introduce a method for the extraction of discriminatory information from the MI-based EEG signals for BCI applications. The proposed scheme develops an optimal allocation (OA)-based approach to discover the most effective representatives with minimal variability from a large number of MI-based EEG data. To investigate a suitable classifier for the OA-based features, the least square support vector machine (LS-SVM) and Naive Bayes (NB) methods are applied separately on the extracted features for discriminating the MI activities. Experimental results on datasets, IVa and IVb of BCI Competition III, show that the OA-based features with the LS-SVM classifier yields better performances compared to the NB classifiers. The results also demonstrate that the classification performance is improved up to 21.16 %, through the use of the OA algorithm with the LS-SVM, compared to the reported four prominent methods. This implies that the OA technique is promising for extracting representative characteristics from MI-based EEG data, which can be reliably used with the LS-SVM to identify different signals of brain activities in the development of BCI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McFarland DJ, Wolpaw JR (2011) Brain-computer interfaces for communication and control. Commun ACM 54(5):60–66

    Article  Google Scholar 

  2. Thomas KP, Guan C, Lau CT, Vinod AP, Ang KK (2009) A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733

    Article  Google Scholar 

  3. McFarland DJ, Anderson CW, Muller K-R, Schlogl A, Krusienski DJ (2006) Bci meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans Neural Syst Rehabil Eng 14(2):135–138

    Article  Google Scholar 

  4. Duda RO, Hart PE, Stork DG (2201) Pattern recognition, second edition, WILEYINTERSCIENCE

  5. Long J, Li Y, Yu Z (2010) A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces. Cogn Neurodyn 4:207–216

    Article  Google Scholar 

  6. Schlogl A, Neuper C, Pfurtscheller G (2002) Estimating the mutual information of an EEG-based brain-computer interface. Biomed Tech (Berl) 47:3–8

    Article  Google Scholar 

  7. Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6:316–325

    Article  Google Scholar 

  8. Burke DP, Kelly SP, Chazal P, Reilly RB, Finucane C (2005) A parametric feature extraction and classification strategy for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 3:12–17

    Article  Google Scholar 

  9. Guger C, Schlogl A, Neuper C, Walterspacher C, Strein D, Pfurtscheller T, Pfurtscheller G (2001) Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 9:49–58

    Article  Google Scholar 

  10. Jansen BH, Bourne JR, Ward JW (1981) Autoregressive estimation of short segment spectra for computerized EEG analysis. IEEE Trans Biomed Eng 28(9):630–637

    Article  Google Scholar 

  11. Polat K, Gunes S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187:1017–1026

    Article  MATH  MathSciNet  Google Scholar 

  12. Blanchard G, Blankertz B (2004) BCI competition 2003-Data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans Biomed Eng 51:1062–1066

    Article  Google Scholar 

  13. Lemm S, Blankertz B, Curio G, Muller KR (2005) Spatio-spatial filters for improved classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548

    Article  Google Scholar 

  14. Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Neural Syst Rehabil Eng 55:1733–1743

    Google Scholar 

  15. Qin L, He B (2005) A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2:65–72

    Article  Google Scholar 

  16. Ting W, Guo-Zheng Y, Bang-Hua Y, Hong S (2008) EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41:618–625

    Article  Google Scholar 

  17. Liao K, Zhu M, Ding L (2013) A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems. Comput Methods Programs Biomed 111:376–388

    Article  Google Scholar 

  18. Gysels E, Celka P (2004) Phase synchronization for the recognition of mental tasks in a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 12:406–415

    Article  Google Scholar 

  19. Park SA, Hwang HJ, Lim JH, Choi JH, Jung HK, Im CH (2013) Evaluation of feature extraction methods for EEG-based brain–computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51:571–579

    Article  Google Scholar 

  20. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  Google Scholar 

  21. Quian Quiroga R (2009) Bivariable and multivariable analysis of EEG signals, Book Chapter 4, pp. 109–120

  22. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89:1123–1134

    Article  Google Scholar 

  23. Herman P, Prasad G, McGinnity TM, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16:317–326

    Article  Google Scholar 

  24. Schlogl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition. J Neural Eng 2:L14–L22

    Article  Google Scholar 

  25. Bajaj V, Pachori RB (2013) Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput Methods Programs Biomed 112:320–328

    Article  Google Scholar 

  26. Wang T, Deng J, He B (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 115:2744–2753

    Article  Google Scholar 

  27. Wang Y, Zang Z, Li Y, Gao S, Yang F (2004) BCI competition 2003-Dataset iv: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans Biomed Eng 51:1081–1086

    Article  Google Scholar 

  28. Muller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Biomed Eng (Biomedizinische Technik) 49:11–22

    Article  Google Scholar 

  29. Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157:1260–1275

    Article  MATH  MathSciNet  Google Scholar 

  30. Hosseinifarda B, Moradia MH, Rostami R (2013) Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed 109:339–345

    Article  Google Scholar 

  31. Pfurtscheller G, Brunner C, Schlogl A, da Silva FHL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31:153–159

    Article  Google Scholar 

  32. BCI competition III, http://www.bbci.de/competition/iii

  33. Blankertz K, Muller R, Krusierski DJ, Schalk G, Wolpaw JR, Schlgl A, Pfurtscheller G, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159

    Article  Google Scholar 

  34. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2):R35–R57

    Article  Google Scholar 

  35. Islam MN (2007) An introduction to sampling methods: theory and applications, revised ed., Book World, Dhaka New Market & P.K. Roy road, Bangla Bazar, Dhaka-1100

  36. Cochran WG (1977) Sampling techniques. Wiley, New York

    MATH  Google Scholar 

  37. Islam MN (2004) An introduction to statistics and probability, 3rd ed., Mullick & brothers, Dhaka New Market, Dhaka-1205, pp. 160–161

  38. De Veaux RD, Velleman PF, Bock DE (2008) Intro Stats, 3rd edn. Pearson Addison Wesley, Boston

    Google Scholar 

  39. Siuly, Li Y (2012) Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain computer interface. IEEE Trans Neural Syst Rehabil Eng 20(4):526–538

    Article  Google Scholar 

  40. Siuly, Li Y, Wen P (2014) Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain computer interface. Comput Methods Programs Biomed 113(3):767–780

    Article  Google Scholar 

  41. Thissen U, Ustun B, Melssen WJ, Buydens LMC (2004) Multivariate calibration with least-square support vector machines. Anal Chem 76:3099–3105

    Article  Google Scholar 

  42. Siuly, Li Y, Wen P Classification of EEG signals using sampling techniques and least square support vector machines, RSKT 2009, LNCS 5589, pp. 375–382

  43. Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least square support vector machine, World Scientific, Singapore

  44. Siuly, Li Y (2014) A novel statistical framework for multiclass EEG signal classification, Eng Appl Artif Intel 34:154–167

  45. Siuly, Li Y, Wen P (2011) Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed 104:358–372

    Article  Google Scholar 

  46. Richard DGS, Duda O, Hart PE (2000) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  47. Siuly, Li Y, Wen P (2011) EEG signal classification based on simple random sampling technique with least square support vector machines. Int J Biomed Eng Technol 7(4):390–409

    Article  Google Scholar 

  48. Siuly, Li Y, Wen P (2014) Comparisons between motor area EEG and all-channels EEG for two algorithms in motor imagery task classification, biomedical engineering: applications, basis and communications (BME) 26(3):1450040 (10 pages)

  49. Siuly, Li Y, Wen P (2013) Identification of motor imagery tasks through CC-LR Algorithm in brain computer interface. Int J Bioinform Res Appl 9(2):156–172

    Article  Google Scholar 

  50. Suk H, Lee SW (2013) A novel bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 35(2):286–299

    Article  Google Scholar 

  51. Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial patterns with aggregation for EEG classification in small-sample setting. IEEE Trans Biomed Eng 57:2936–2945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siuly Siuly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siuly, S., Li, Y. Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach. Neural Comput & Applic 26, 799–811 (2015). https://doi.org/10.1007/s00521-014-1753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1753-3

Keywords

Navigation