Skip to main content
Log in

Color pathological image encryption scheme with S-boxes generated by complex chaotic system and environmental noise

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Pathological image encryption can help protect medical privacy. The paper proposes a color pathological image encryption scheme where three S-boxes are utilized to encrypt the red, green and blue components alternately. The S-boxes generated by complex chaotic system are changed dynamically, for the initial values and parameter are dependent on both the plain image and the environmental noise. The S-box switching sequence for each color component is also generated by complex chaotic system. Some effective measures have been taken to speed up the processes of encryption and decryption. Simulation result demonstrates that the scheme is suitable for color pathological image encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Özkaynak F, Özer AB (2010) A method for designing strong S-Boxes based on chaotic Lorenz system. Phys Lett A 374(36):3733–3738

    Article  MATH  Google Scholar 

  2. Hussain I, Azam NA (2014) Tariq Shah. Stego optical encryption based on chaotic S-box transformation. Opt Laser Technol 61:50–56

    Article  Google Scholar 

  3. Hussain I, Shah T, Gondal MA (2013) Application of image-box and chaotic map for image encryption. Math Comput Model 57(9–10):2576–2579

    Article  MATH  Google Scholar 

  4. Hussain I, Gondal MA (2014) An extended image encryption using chaotic coupled map and S-box transformation. Nonlinear Dyn 76(2):1355–1363

    Article  Google Scholar 

  5. Hussain I, Shah T, Gondal MA (2014) Image encryption algorithm based on total shuffling scheme and chaotic S-box transformation. J Vib Control 20(14):2133–2136

    Article  Google Scholar 

  6. Hussain I, Shah T, Gondal MA (2012) Image encryption algorithm based on PGL(2, GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dyn 70(1):181–187

    Article  MathSciNet  Google Scholar 

  7. Akhshani A, Akhavan A, Mobaraki A et al (2014) Pseudo random number generator based on quantum chaotic map. Commun Nonlinear Sci Numer Simul 19(1):101–111

    Article  Google Scholar 

  8. Schneier B (2007) Applied cryptography: protocols, algorithms, and source code in C. Wiley, New Jersey

    MATH  Google Scholar 

  9. Fouda JSAE, Effa JY, Sabat SL et al (2014) A fast chaotic block cipher for image encryption. Commun Nonlinear Sci Numer Simul 19(3):578–588

    Article  MathSciNet  Google Scholar 

  10. Zhang YQ, Wang XY (2014) A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf Sci 273:329–351

    Article  Google Scholar 

  11. Farash MS, Attari MA (2014) An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps. Nonlinear Dyn 77(1–2):399–411

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang FC, Zhang GY (2014) Boundedness solutions of the complex Lorenz chaotic system. Appl Math Comput 243:12–23

    MathSciNet  Google Scholar 

  13. Mahmoud EE (2014) Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems. Math Methods Appl Sci 37(3):321–328

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan JW, Zhao N, Gao Y et al (2013) Function synchronization of the fractional-order chaotic system. Adv Mater Res 631:1220–1225

    Google Scholar 

  15. Luo C, Wang XY (2013) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71(1–2):241–257

    Article  MathSciNet  MATH  Google Scholar 

  16. Menon PS, Ritwik M (2014) A comprehensive but not complicated survey on quantum computing. IERI Proced 10:144–152

    Article  Google Scholar 

  17. Heyse S, Zimmermann R, Paar C (2014) Attacking code-based cryptosystems with information set decoding using special-purpose hardware[M]//post-quantum cryptography. Springer International Publishing, New York, pp 126–141

    MATH  Google Scholar 

  18. NIST, Guide to the Statistical Tests, http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html, 2014

  19. Hermassi H, Rhouma R, Belghith S (2013) Improvement of an image encryption algorithm based on hyper-chaos. Telecommun Syst 52(2):539–549

    Google Scholar 

  20. Liu H, Wang X, Kadir A (2013) Color image encryption using Choquet fuzzy integral and hyper chaotic system. Optik Int J Light Elect Opt 124(18):3527–3533

    Article  Google Scholar 

  21. Xiao D, Zhang YS (2014) Self-adaptive permutation and combined global diffusion for chaotic color image encryption. AEU Int J Elect Commun 68(4):361–368

    Article  Google Scholar 

  22. Seyedzadeh SM, Mirzakuchaki S (2012) A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Process 92(5):1202–1215

    Article  Google Scholar 

  23. Liu G, Li J, Liu H (2014) Chaos-based color pathological image encryption scheme using one-time keys. Comput Biol Med 45:111–117

    Article  Google Scholar 

  24. Zanin M, Pisarchik AN (2014) Gray code permutation algorithm for high-dimensional data encryption. Inf Sci 270:288–297

    Article  Google Scholar 

  25. Norouzi B, Mirzakuchaki S (2014) A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn 78(2):995–1015

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No: 61363082) and the Natural Science Foundation of Weifang (No. 2014ZJ1060).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Kadir, A. & Liu, H. Color pathological image encryption scheme with S-boxes generated by complex chaotic system and environmental noise. Neural Comput & Applic 27, 687–697 (2016). https://doi.org/10.1007/s00521-015-1888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1888-x

Keywords

Navigation