Skip to main content
Log in

Constructing constant mean curvature surfaces with fixed-point half dynamic model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a method to generate a constant mean curvature (CMC) surface with the given boundary. By assuming the velocity to zero in the dynamic model for every step, a fixed-point iteration is carried out. Either the variation of Dirichlet energy or area energy can be chosen to be the approximation of the mean curvature. Experiments and results show that our method can work for minimal surfaces or CMC surfaces with nonzero mean curvature and with fixed or free boundary. Meanwhile it is robust with poor quality initial mesh as well as non-uniformly distributed vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Plateau J (1873) Expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol 2. Gauthier-Villars, Paris

    Google Scholar 

  2. Smith J (2003) Three applications of optimization in computer graphics. PhD thesis, Citeseer

  3. Nitsche JC (1989) Lectures on minimal surfaces, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  4. Cosín C, Monterde J (2002) Bézier surfaces of minimal area. In: Computational science-ICCS 2002. Springer, p 72C81

  5. Monterde J (2004) Bézier surfaces of minimal area: the Dirichlet approach. Comput Aided Geom Des 21(2):117C136

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen W, Cai Y, Zheng J (2008) Constructing triangular meshes of minimal area. Comput Aided Des Appl 5(1–4):508–518

    Google Scholar 

  7. Liu Y, Wang G (2011) Constructing minimal triangular mesh based on discrete mean curvature. Commun Inf Sci Manag Eng 1(7):30–35

    Google Scholar 

  8. Madsen K, Bruun H, Tingleff O (1999) Methods for non-linear least squares problems. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.3864

  9. Veenendaal D, Block P (2012) An overview and comparison of structural form finding methods for general networks. Int J Solids Struct 49(26):3741–3753

    Article  Google Scholar 

  10. Renka RJ (2014) A trust region method for constructing triangle-mesh approximations of parametric minimal surfaces. Appl Numer Math 76:93–100

    Article  MathSciNet  MATH  Google Scholar 

  11. Pan Q, Guoliang X (2011) Construction of constant mean curvature subdivision surfaces. J Comput Aided Des Comput Graph 27(6):964–970 (in chinese)

    Google Scholar 

  12. Kapouleas N (1990) Complete constant mean curvature surfaces in euclidean three-space. Ann Math 131(2):239–330

    Article  MathSciNet  MATH  Google Scholar 

  13. Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165

    Article  MathSciNet  MATH  Google Scholar 

  14. Pinkall U, Polthier K (1993) Computing discrete minimal surfaces and their conjugates. Exp Math 2(1):15–36

    Article  MathSciNet  MATH  Google Scholar 

  15. Dziuk G, Hutchinson JE (2006) Finite element approximations to surfaces of prescribed variable mean curvature. Numer Math 102(4):611–648

    Article  MathSciNet  MATH  Google Scholar 

  16. Guoliang X, Zhang Q (2008) A general framework for surface modeling using geometric partial differential equations. Comput Aided Geom Des 25(3):181–202

    Article  MathSciNet  MATH  Google Scholar 

  17. Pan H, Choi Y-K, Liu Y, Wenchao H, Qiang D, Polthier K, Zhang C, Wang W (2012) Robust modeling of constant mean curvature surfaces. ACM Trans Graph (TOG) 31(4):85

    Article  Google Scholar 

  18. Crane K, Pinkall U, Schroder P (2011) Spin transformations of discrete surfaces. ACM Transactions on Graphics (TOG) 30:104

    Article  Google Scholar 

  19. Jinsp S, Zhang Y, Wang CCL (2014) Deformation with enforced metrics on length, area and volume. In: Computer graphics forum, vol 33. Wiley Online Library, pp 429–438

  20. Meyer M, Desbrun M, Schröder P, Barr AH (2003) Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and mathematics III. Springer, pp 35–57

  21. Wang J, Yang Z, Chen F (2012) A variational model for normal computation of point clouds. Vis Comput 28(2):163–174

    Article  MathSciNet  Google Scholar 

  22. Yu Y, Wu Q, Khan Y, Chen M (2015) An adaptive variation model for point cloud normal computation. Neural Comput Appl 26(6):1451–1460

    Article  Google Scholar 

  23. Miller CA, Neogi P (2007) Interfacial phenomena: equilibrium and dynamic effects, vol 139. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Eigensatz M, Sumner RW, Pauly M (2008) Curvature-domain shape processing. In: Computer graphics forum, vol 27. Wiley Online Library, pp 241–250

  25. Miller GL, Pav SE, Walkington N (2002) An incremental delaunay meshing algorithm. Carnegie Mellon University, Department of Mathematical Sciences, Center for Nonlinear Analysis

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11371320), Zhejiang Natural Science Foundation (Grant No. LZ14A010002), Foundation of Science and Technology Department (Grant No. 2013C31084) of Zhejiang Province, and Scientific Research Fund of Zhejiang Provincial Education Department (Grant Nos. Y201431077 and Y201329420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wu, Q. & Khan, Y. Constructing constant mean curvature surfaces with fixed-point half dynamic model. Neural Comput & Applic 27, 2577–2586 (2016). https://doi.org/10.1007/s00521-015-2026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2026-5

Keywords

Navigation