Skip to main content
Log in

Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A necessary condition for stability of a class of recurrent type-2 TSK fuzzy systems is presented. In this system, the antecedent part is indeed represented by interval Gaussian type-2 fuzzy set, and the consequent part is an ordinary nonlinear function of the system’s inputs. In the proposed method, at first a type-2 fuzzy model is established, and then an LMI-based stability analysis of the model is fully discussed. Two first-order systems (one stable and one unstable) and two second-order systems (one stable and one unstable) are then considered as proper case studies. The simulation results easily approve the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sanchez MA, Castillo O, Castro JR (2015) Information granule formation via the concept of uncertainty-based information with interval type-2 fuzzy sets representation and Takagi–Sugeno–Kang consequents optimized with Cuckoo search. Appl Soft Comput 27:602–609

    Article  Google Scholar 

  2. Gaxiola F, Melin P, Valdez F, Castillo O (2014) Interval type-2 fuzzy weight adjustment for back propagation neural networks with application in time series prediction. Inf Sci 260:1–14

    Article  MATH  Google Scholar 

  3. Castillo O, Castro JR, Melin P, Díaz AR (2014) Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18(6):1213–1224

    Article  Google Scholar 

  4. Castillo O, Castro JR, Melin P, Díaz AR (2013) Universal approximation of a class of interval type-2 fuzzy neural networks in nonlinear identification. Adv Fuzzy Syst 2013:1–16. Art ID 136214

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro JR, Castillo O, Melin P, Díaz AR (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179(13):2175–2193

    Article  MATH  Google Scholar 

  6. Hagras HA (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12(4):524–539

    Article  Google Scholar 

  7. Ozen T, Garibaldi JM (2003) Investigating adaptation in type-2 fuzzy logic systems applied to umbilical acid-base assessment. In: European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems, Oulu

  8. Méndez GM, Hernandez MA (2009) Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods. Inf Sci 179(13):2146–2157

    Article  Google Scholar 

  9. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Parts 1, 2, and 3. Inf Sci 8:199–249

    Article  MATH  Google Scholar 

  10. Lam HK, Lauber J (2012) Stability analysis of nonlinear-function fuzzy model-based control systems. J Franklin Inst 349(10):3102–3120

    Article  MathSciNet  MATH  Google Scholar 

  11. Zamani I, Sadati N, Zarif MH (2011) On the stability issues for fuzzy large-scale systems. Fuzzy Sets Syst 174:31–49

    Article  MathSciNet  MATH  Google Scholar 

  12. Li J, Hu M, Guo L, Yang Y, Jin Y (2015) Stability of uncertain impulsive stochastic fuzzy neural networks with two additive time delays in the leakage term. Neural Comput Appl 26(2):417–427

    Article  Google Scholar 

  13. Lee DH, Park JB, Joo YH (2011) Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi Sugeno fuzzy systems. Automatica 47(3):534–538

    Article  MathSciNet  MATH  Google Scholar 

  14. Li X, Rakkiyappan R (2013) Stability results for Takagi-Sugeno fuzzy uncertain BAM neural networks with time delays in the leakage term. Neural Comput Appl 22(1):203–219

    Google Scholar 

  15. Suratgar AA, Nikravesh SK (2005) Potential energy based stability analysis of fuzzy linguistic systems. Iran J Fuzzy Syst 2(1):65–74

    MathSciNet  MATH  Google Scholar 

  16. Suratgar AA, Nikravesh SK (2009) A new method for linguistic modeling with stability analysis and applications. Intell Autom Soft Comput 15(3):329–342

    Article  Google Scholar 

  17. Mohan BM, Sinha A (2008) Analytical structure and stability analysis of a fuzzy PID controller. Appl Soft Comput 8:749–758

    Article  Google Scholar 

  18. Yang G (2014) New results on the stability of fuzzy cellular neural networks with time-varying leakage delays. Neural Comput Appl 25(7–8):1709–1715

    Article  Google Scholar 

  19. Chen L, Wu R, Pan D (2011) Mean square exponential stability of impulsive stochastic fuzzy cellular neural networks with distributed delays. Expert Syst Appl 38:6294–6299

    Article  Google Scholar 

  20. Long S, Xu D (2011) Stability analysis of stochastic fuzzy cellular neural networks with time varying delays. Neurocomputing 74:2385–2391

    Article  Google Scholar 

  21. Idrissi S, Tissir EH, Boumhidi I, Chaibi N (2013) New delay dependent robust stability criteria for T–S fuzzy systems with constant delay. Int J Control Autom Syst 11(5):885–892

    Article  Google Scholar 

  22. Ali MS (2014) Robust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays. Iran J Fuzzy Syst 11(4):1–13

    MathSciNet  MATH  Google Scholar 

  23. Muralisankar S, Gopalakrishnan N (2014) Robust stability criteria for Takagi–Sugeno fuzzy Cohen–Grossberg neural networks of neutral type. Neurocomputing 144:516–525

    Article  MATH  Google Scholar 

  24. Lam HK, Seneviratne LD (2008) Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans Syst Man Cybern B Cybernet 38(3):617–628

    Article  Google Scholar 

  25. Biglarbegian M, Melek WW, Mendel JM (2009) On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans Syst Man Cybern B Cybernet 40(3):798–818

    Article  Google Scholar 

  26. Jafarzadeh S, Sami Fadali M, Sonbol AH (2011) Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part I. Stability analysis. IEEE Trans Fuzzy Syst 19(6):1001–1013

    Article  Google Scholar 

  27. Kumbasar T (2014) Robust stability analysis of PD type single input interval type-2 fuzzy control systems. In: IEEE International Conference on Fuzzy Systems, Beijing, China

  28. Yu WS, Chen HS (2014) Interval type-2 fuzzy adaptive tracking control design for PMDC motor with the sector dead-zones. Inf Sci 288:108–134

    Article  Google Scholar 

  29. El-Nagar AM, El-Bardini M (2014) Derivation and stability analysis of the analytical structures of the interval type-2 fuzzy PID controller. Appl Soft Comput 24:704–716

    Article  Google Scholar 

  30. Pan Y, Lib Y, Zhou Q (2014) Fault detection for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing 145:488–494

    Article  Google Scholar 

  31. Ganjefar S, Solgi Y (2015) A Lyapunov stable type-2 fuzzy wavelet network controller design for a bilateral teleoperation system. Inf Sci 311:1–17

    Article  MathSciNet  Google Scholar 

  32. Cázarez N, Castillo O, Aguilar L, Cárdenas S (2007) From type-1 to type-2 fuzzy logic control: a stability and robustness study. Stud Fuzziness Soft Comput 208:135–149

    Article  MATH  Google Scholar 

  33. Castillo O, Aguilar L, Cázarez N, Melin P (2008) Systematic design of a stable type-2 fuzzy logic controller. Stud Fuzziness Soft Comput 218:319–331

    Article  Google Scholar 

  34. Morales J, Castillo O, Soria J (2008) Stability on type-1 and type-2 fuzzy logic systems. Stud Comput Intell 154:29–51

    Google Scholar 

  35. Nelles O (2001) Nonlinear system identification. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  36. Moodi H, Farrokhi M (2013) Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent. Int J Appl Math Comput Sci 23(4):711–723

    Article  MathSciNet  MATH  Google Scholar 

  37. Abiyev R, Mamedov F, Al-shanableh T (2007) Nonlinear neuro-fuzzy network for channel equalization. Anal Des Intell Syst Soft Comput Tech 41:327–336

    Article  Google Scholar 

  38. Tavoosi J, Badamchizadeh MA (2013) A class of type-2 fuzzy neural networks for nonlinear dynamical system identification. Neural Comput Appl 23(3):707–717

    Article  Google Scholar 

  39. Jahangiri F, Doustmohammadi A, Menhaj MB (2012) An adaptive wavelet differential neural networks based identifier and its stability analysis. Neurocomputing 77:12–19

    Article  Google Scholar 

  40. Dereli T, Baykasoglu A, Altun K, Durmusoglu A, Turksen IB (2011) Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput Ind 62:125–137

    Article  Google Scholar 

  41. Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  42. Castillo O, Melin P (2008) Type-2 fuzzy logic: theory and applications. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  43. Karnik N, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  44. Sontag ED (1997) Recurrent neural networks: Some systems-theoretic aspects. In: Karny M, Warwick K, Kurkova V (eds) Dealing with complexity: a neural network approach. Springer, London

    Google Scholar 

  45. Barabanov N, Prokhorov D (2002) Stability analysis of discrete time recurrent neural networks. IEEE Trans Neural Networks 13:292–303

    Article  Google Scholar 

  46. Chu Y, Glover K (1999) Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities. IEEE Trans Autom Control 44(2):471–483

    Article  MathSciNet  MATH  Google Scholar 

  47. Forssell U, Ljung L (2000) Identification of unstable systems using output error and Box–Jenkins model structures. IEEE Trans Autom Control 45(1):137–140

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abolfazl Suratgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavoosi, J., Suratgar, A.A. & Menhaj, M.B. Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part. Neural Comput & Applic 28, 47–56 (2017). https://doi.org/10.1007/s00521-015-2036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2036-3

Keywords

Navigation