Skip to main content

Advertisement

Log in

PI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump load

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to maximize its output power. A new MPPT system has been suggested for PV–DC motor pump system by designing two PI controllers. The first one is used to reach MPPT by monitoring the voltage and current of the PV array and adjusting the duty cycle of the DC/DC converter. The second PI controller is designed for speed control of DC series motor by setting the voltage fed to the DC series motor through another DC/DC converter. The suggested design problem of MPPT and speed controller is formulated as an optimization task which is solved by artificial bee colony (ABC) to search for optimal parameters of PI controllers. Simulation results have shown the validity of the developed technique in delivering MPPT to DC series motor pump system under atmospheric conditions and tracking the reference speed of motor. Moreover, the performance of the ABC algorithm is compared with genetic algorithm for various disturbances to prove its robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

i a :

The armature current

V t :

The motor terminal voltage

R a and L a :

The armature resistance and inductance

R f and L f :

The field resistance and inductance

ω r :

The motor angular speed

J m :

The moment of inertia

T L :

The load torque

f :

The friction coefficient

M af :

The mutual inductance between the armature and field

I and V :

Module output current and voltage

I c and V c :

Cell output current and voltage

I ph and V ph :

The light generation current and voltage

I s :

Cell reverse saturation current

I sc :

The short circuit current

I o :

The reverse saturation current

R s :

The module series resistance

T :

Cell temperature

K :

Boltzmann’s constant

q o :

Electronic charge

KT:

(0.0017 A/°C) short circuit current temperature coefficient

G :

Solar illumination in W/m2

E g :

Band gap energy for silicon

A :

Ideality factor

T r :

Reference temperature

I or :

Cell rating saturation current at T r

n s :

Series connected solar cells

k i :

Cell temperature coefficient

V B and I B :

The output converter voltage and current respectively

k :

The duty cycle of the pulse width modulation (PWM)

e 1 :

The error in the MPPT control loop

e 2 :

The error in the speed control loop

J :

The objective function

K P1 and K I1 :

The parameters of first PI controller for MPPT control loop

K P2 and K I2 :

The parameters of second PI controller for speed control loop

t sim :

The time of simulation

References

  1. Masters GM (2004) Renewable and efficient electric power systems. Wiley, Hoboken

    Book  Google Scholar 

  2. Ahin AE (2012) Modeling and optimization of renewable energy systems. InTech, India

    Google Scholar 

  3. Patel MR (2006) Wind and solar power systems: design, analysis, and operation, 2nd edn. CRC Press, Taylor & Francis Group, USA

    Google Scholar 

  4. Veerachary M, Seniyu T, Uezato K (2001) Maximum power point tracking control of IDB converter supplied PV system. IEE Proc Electron Power Appl 148(6):494–502

    Article  Google Scholar 

  5. Armstrong S, Hurley W (2004) Self regulating maximum power point tracking for solar energy systems. In: 39th international universities power engineering conference, UPEC, Bristol, UK, pp 604–609

  6. Piegari L, Rizzo R (2010) Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew Power Gener 4(4):317–328

    Article  Google Scholar 

  7. Eltawil MA, Zhao Z (2013) MPPT techniques for photovoltaic applications. Renew Sustain Energy Rev 25:793–813

    Article  Google Scholar 

  8. Brambilla A, Gambarara M, Garutti A, Ronchi F (1999) New approach to photovoltaic arrays maximum power point tracking. In: 30th annual IEEE power electronics specialists conference 1999 (PESC 99), vol 2, pp 632–637

  9. Hohm DP, Ropp ME (2000) Comparative study of maximum power point tracking algorithm using an experimental programmable, maximum power point tracking test bed. In: Proceedings of 28th IEEE photovoltaic specialist conference, pp 1699–1702

  10. Swiegers W, Enslin J (1998) An integrated maximum power point tracker for photovoltaic panels. In: Proceedings IEEE international symposium on industrial electronics, vol 1, pp 40–44

  11. Oshiro M, Tanaka K, Senjyu T, Toma S, Atsushi Y, Saber A, Funabashi T, Kim C (2011) Optimal voltage control in distribution systems using PV generators. Int J Electr Power Energy Syst 33(3):485–492

    Article  Google Scholar 

  12. Youesf A, Oshaba A (2012) Efficient fuzzy logic speed control for various types of DC motors supplied by photovoltaic system under maximum power point tracking. J Eng Sci Assiut Univ 40(5):1455–1474

    Google Scholar 

  13. Hui J, Sun X (2010) MPPT strategy of PV system based on adaptive fuzzy PID algorithm. In: International conference on life system modeling and intelligent computing, vol 97, pp 220–228

  14. Ouada M, Meridjet M, Saoud M, Talbi N (2013) Increase efficiency of photovoltaic pumping system based BLDC motor using fuzzy logic MPPT control. WSEAS Trans Power Syst 8(3):104–113

    Google Scholar 

  15. AI-Amoudi A, Zhang L (2000) Application of radial basis function networks for solar-array modeling and maximum power-point prediction. In: IEE proceeding-generation, transmission and distribution, vol 147, no. 5, pp 310–316

  16. Bahgat ABG, Helwa NH, Ahmad GE, El Shenawy ET (2005) Maximum power point tracking controller for PV systems using neural networks. Renew Energy 30(8):1257–1268

    Article  Google Scholar 

  17. Zhang H, Cheng S (2011) A new MPPT algorithm based on ANN in solar PV systems. Adv Comput Commun Control Autom LNEE 121:77–84

    Article  Google Scholar 

  18. Baek J, Ko J, Choi J, Kang S, Chung D (2010) Maximum power point tracking control of photovoltaic system using neural network. In: International of conference on electrical machines and systems (ICEMS), pp 638–643

  19. Kassem AM (2012) MPPT control design and performance improvements of a PV generator powered DC motor-pump system based on artificial neural networks. Int J Electr Power Energy Syst 43:90–98

    Article  Google Scholar 

  20. Younis MA, Khatib T, Najeeb M, Ariffin AM (2012) An improved maximum power point tracking controller for PV systems using artificial neural network. Prz Elektrotech 88(3b):116–121

    Google Scholar 

  21. Ishaque K, Salam Z (2011) An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol Energy 85:2349–2359

    Article  Google Scholar 

  22. Ishaque K, Salam Z, Taheri H, Shamsudin A (2011) A critical evaluation of EA computational methods for photovoltaic cell parameter extraction Based on two diode model. Sol Energy 85:1768–1779

    Article  Google Scholar 

  23. Ramaprabha R, Gothandaraman V, Kanimozhi K, Divya R, Mathur BL (2011) Maximum power point tracking using GA optimized artificial neural network for solar PV system. In: IEEE international conference on electrical energy systems, pp 264–268

  24. Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 27(8):3627–3638

    Article  Google Scholar 

  25. Zhao Y, Zhao X, Zhang Y (2014) MPPT for photovoltaic system using multi-objective improved particle swarm optimization algorithm. Teklanika Indones J Electr Eng 12(1):261–268

    Google Scholar 

  26. Gokmen N, Karatepe E, Ugranli F, Silvestre S (2013) Voltage band based global MPPT controller for photovoltaic systems. Sol Energy 98(3):322–334

    Article  Google Scholar 

  27. Oshaba AS, Ali ES (2013) Speed control of induction motor fed from wind turbine via particle swarm optimization based PI controller. Res J Appl Sci Eng Technol 5(18):4594–4606

    Google Scholar 

  28. Oshaba AS, Ali ES (2013) Swarming speed control for DC permanent magnet motor drive via pulse width modulation technique and DC/DC converter. Res J Appl Sci Eng Technol 5(18):4576–4583

    Google Scholar 

  29. Pooja B, Dub SS, Singh JB, Lehana P (2013) Solar power optimization using BFO algorithm. Int J Adv Res Comput Sci Softw Eng 3(12):238–241

    Google Scholar 

  30. Ali ES, Abd-Elazim SM (2013) Power system stability enhancement via bacteria foraging optimization algorithm. Int Arab J Sci Eng (AJSE) 38(3):599–611

    Article  Google Scholar 

  31. Abd-Elazim SM, Ali ES (2013) Synergy of particle swarm optimization and bacterial foraging for TCSC damping controller design. Int J WSEAS Trans Power Syst 8(2):74–84

    Google Scholar 

  32. Abd-Elazim SM, Ali ES (2013) A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design. Int J Electr Power Energy Syst 46:334–341

    Article  Google Scholar 

  33. Oshaba AS, Ali ES (2014) Bacteria foraging: A new technique for speed control of DC series motor supplied by photovoltaic system. Int J WSEAS Trans Power Syst 9:185–195

    Google Scholar 

  34. Ali ES, Abd-Elazim SM (2014) Power system stability enhancement via new coordinated design of PSSs and SVC. Int J WSEAS Trans Power Syst 9:428–438

    Google Scholar 

  35. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  36. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  37. Abedinia O, Wyns B, Ghasemi A (2011) Robust fuzzy PSS design using ABC. In: 10th environment and electrical energy international conference (EEEIC) Rome, Italy, pp 100–103

  38. Gitizadeh M, Khalilnezhad H, Hedayatzadeh R (2013) TCSC allocation in power systems considering switching loss using MOABC algorithm. Electr Eng 95(2):73–85

    Article  Google Scholar 

  39. Tiacharoen S, Chatchanayuenyong T (2012) Design and development of an intelligent control by using bee colony optimization technique. Am J Appl Sci 9(9):1464–1471

    Article  Google Scholar 

  40. Awan SM, Aslam M, Khan ZA, Saeed H (2014) An efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecasting. Neural Comput Appl 25(7–8):1967–1978

    Article  Google Scholar 

  41. Abedinia O, Naslian MD, Bekravi M (2014) A new stochastic search algorithm bundled honeybee mating for solving optimization problems. Neural Comput Appl 25(7–8):1921–1939

    Article  Google Scholar 

  42. Mostofi F, Safavi M (2013) Application of ABC algorithm for grid-independent hybrid hydro/photovoltaic/wind/fuel cell power generation system considering cost and reliability. Int J Renew Energy Res 3(4):928–940

    Google Scholar 

  43. Oliva D, Cuevas E, Pajares G (2014) Parameter identification of solar cells using artificial bee colony optimization. Energy 72(1):93–102

    Article  Google Scholar 

  44. Babar B, Crăciunescu A (2014) Comparison of artificial bee colony Algorithm with other algorithms used for tracking of maximum power point of photovoltaic arrays. Renew Energy Power Q J 12:1–4

    Google Scholar 

  45. Benyoucef AS, Chouder A, Kara K, Silvestre S, Sahed OA (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48

    Article  Google Scholar 

  46. Yeadon WH, Yeadon AW (2001) Handbook of small electric motors. McGraw-Hill, New York

    MATH  Google Scholar 

  47. Mehta R, Mehta VK (2013) Principles of electrical machines, 2nd edn. S. Chand Publishing, New Delhi, India

    Google Scholar 

  48. Erickson RW, Maksimovic D (2001) Fundamentals of power electronics, 2nd edn. Springer, New York

    Book  Google Scholar 

  49. Mohan N, Undeland TM, Robbins WP (2003) Power electronics converters, applications, and design, 3rd edn. Wiley, Amsterdam

    Google Scholar 

  50. Osheba DS (2011) Photovoltaic system fed DC motor controlled by converters. In: M.Sc. Thesis, March 2011, Menoufiya University, Egypt

  51. Salam Z, Ahmed J, Merugu BS (2013) The application of soft computing methods for MPPT of PV system: a technological and status review. Appl Energy 107:135–148

    Article  Google Scholar 

  52. Oshaba AS, Ali ES, Abd-Elazim SM (2015) MPPT control design of PV system supplied SRM using BAT search algorithm. Sustain Energy Grids Netw 2C:51–60

    Article  Google Scholar 

  53. Hua C, Shen C (1997) Control of DC/DC converters for solar energy system with maximum power tracking. In: 23rd international conference on industrial electronics, control and instrumentation. IECON’97, vol 2, pp 827–832

  54. Liu X, Lopes LAC (2004) An improvement perturbation and observation maximum power point tracking algorithm for PV arrays. In: Power electronics specialists conference, PESC’04, vol 3, pp 2005–2010

  55. Nafeh AA, Fahmy FH, Mahgoub OA, El-Zahab EM (1998) Developed algorithm of maximum power tracking for stand-alone photovoltaic system. Energy Sour 20:45–53

    Article  Google Scholar 

  56. Yu GJ, Jung YS, Choi JY, Kim GS (2004) A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Sol Energy 76(4):445–463

    Article  Google Scholar 

  57. Cheikh MSA, Larbes C, Kebir GFT, Zerguerras A (2007) Maximum power point tracking using fuzzy logic control scheme. Rev Energ Renouv 10(3):387–395

    Google Scholar 

  58. Amrouche B, Belhamel M, Guessoum A (2007) Artificial intelligence based P&O MPPT method for photovoltaic systems. Revue des Energies Renouvelables ICRESD-07 Tlemcen 11–16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abd Elazim.

Appendix

Appendix

The system data are as shown below:

  1. (a)

    DC series motor parameters are shown below

DC motor parameters

Value

Motor rating

3.5 HP

Motor rated voltage

240 V

Motor rated current

12 A

Inertia constant J m

0.0027 kg m2

Damping constant B

0.0019 N m s/rad

Armature resistance R a

1.63 Ω

Armature inductance L a

0.0204 H

Motor speed

2000 rpm

Full load torque

19 N m

  1. (b)

    The parameters of ABC are as follows: The number of colony size = 50; the number of food sources equals to the half of the colony size; the number of cycles = 100; the limit = 100.

  2. (c)

    The parameters of GA are as follows: max generation = 100; population size = 50; crossover probabilities = 0.75; mutation probabilities = 0.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshaba, A.S., Ali, E.S. & Abd Elazim, S.M. PI controller design using ABC algorithm for MPPT of PV system supplying DC motor pump load. Neural Comput & Applic 28, 353–364 (2017). https://doi.org/10.1007/s00521-015-2067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2067-9

Keywords

Navigation