Skip to main content
Log in

Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the constraint initial condition is satisfied, while the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of their r-cut representation form in the Hilbert space \( W_{2}^{2} \left( \varOmega \right) \oplus W_{2}^{2} \left( \varOmega \right) \). Several computational experiments are given to show the good performance and potentiality of the proposed procedure. Finally, the utilized results show that the present method and simulated annealing provide a good scheduling methodology to solve such fuzzy equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbasbandy S, Nieto JJ, Alavi M (2005) Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26:1337–1341. doi:10.1016/j.chaos.2005.03.018

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu Arqub O (2013) Series solution of fuzzy differential equations under strongly generalized differentiability. J Adv Res Appl Math 5:31–52. doi:10.5373/jaram.1447.051912

    Article  MathSciNet  Google Scholar 

  3. Abu Arqub O (2015) An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations. J Comput Anal Appl 8:857–874

    MathSciNet  MATH  Google Scholar 

  4. Abu Arqub O (2015) Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems. Math Probl Eng. doi:10.1155/2015/518406

    MathSciNet  MATH  Google Scholar 

  5. Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922. doi:10.1016/j.amc.2014.06.063

    MathSciNet  MATH  Google Scholar 

  6. Abu Arqub O, Al-Smadi M, Momani S (2012) Application of reproducing kernel method for solving nonlinear Fredholm–Volterra integro-differential equations. Abstract Appl Anal. doi:10.1155/2012/839836

    MATH  Google Scholar 

  7. Abu Arqub O, AL-Smadi M, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4

    Google Scholar 

  8. Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948. doi:10.1016/j.amc.2013.03.006

    MathSciNet  MATH  Google Scholar 

  9. Abu Arqub O, El-Ajou A, Momani S, Shawagfeh N (2013) Analytical solutions of fuzzy initial value problems by HAM. Appl Math Inf Sci 7:1903–1919. doi:10.12785/amis/070528

    Article  MathSciNet  Google Scholar 

  10. Abu Arqub O, Momani S, Al-Mezel S, Kutbi M (2015) Existence, uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of Volterra type. Math Probl Eng. doi:10.1155/2015/835891

    MathSciNet  MATH  Google Scholar 

  11. Alikhani R, Bahrami F (2015) Global solutions of fuzzy integro-differential equations under generalized differentiability by the method of upper and lower solutions. Inf Sci 295:600–608. doi:10.1016/j.ins.2014.10.033

    Article  MathSciNet  MATH  Google Scholar 

  12. Alikhani R, Bahrami F, Jabbari A (2012) Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. Nonlinear Anal Theory Methods Appl 75:1810–1821. doi:10.1016/j.na.2011.09.021

    Article  MathSciNet  MATH  Google Scholar 

  13. Allahviranloo T, Abbasbandy S, Sedaghgatfar O, Darabi P (2012) A new method for solving fuzzy integro-differential equation under generalized differentiability. Neural Comput Appl 21:191–196. doi:10.1007/s00521-011-0759-3

    Article  Google Scholar 

  14. Al-Smadi M, Abu Arqub O, El-Ajuo A (2014) A numerical method for solving systems of first-order periodic boundary value problems. J Appl Math. doi:10.1155/2014/135465

    MathSciNet  Google Scholar 

  15. Al-Smadi M, Abu Arqub O, Momani S (2013) A computational method for two-point boundary value problems of fourth-order mixed integro-differential equations. Math Probl Eng. doi:10.1155/2013/832074

    MATH  Google Scholar 

  16. Babayar B, Soltanalizadeh B (2013) Numerical solution of nonlinear singular Volterra integral system by the Newton product integration method. Math Comput Model 58:1696–1703. doi:10.1016/j.mcm.2013.06.016

    Article  MathSciNet  MATH  Google Scholar 

  17. Babayar B, Soltanalizadeh B (2013) Numerical solution for system of singular nonlinear Volterra integro-differential equations by Newton-product method. Appl Math Comput 219:8375–8383. doi:10.1016/j.amc.2013.01.008

    MathSciNet  MATH  Google Scholar 

  18. Balasubramaniam P, Muralisankar S (2001) Existence and uniqueness of fuzzy solution for the nonlinear fuzzy integrodifferential equations. Appl Math Lett 14:455–462. doi:10.1016/S0893-9659(00)00177-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Bede B, Gal SG (2004) Almost periodic fuzzy-number-valued functions. Fuzzy Sets Syst 147:385–403. doi:10.1016/j.fss.2003.08.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581–599. doi:10.1016/j.fss.2004.08.001

    Article  MATH  Google Scholar 

  21. Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:1648–1662. doi:10.1016/j.ins.2006.08.021

    Article  MathSciNet  MATH  Google Scholar 

  22. Behzadi ShS, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy second-order nonlinear Volterra–Fredholm integro-differential equations by using Picard method. Neural Comput Appl 21:337–346. doi:10.1007/s00521-012-0926-1

    Article  Google Scholar 

  23. Berlinet A, Agnan CT (2004) Reproducing Kernel Hilbert space in probability and statistics. Kluwer Academic Publishers, Boston. doi:10.1007/978-1-4419-9096-9

    Book  MATH  Google Scholar 

  24. Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Sets Syst 110:43–54. doi:10.1016/S0165-0114(98)00141-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Chalco-Cano Y, Román-Flores H (2008) On new solutions of fuzzy differential equations. Chaos Solitons Fractals 38:112–119. doi:10.1016/j.chaos.2006.10.043

    Article  MathSciNet  MATH  Google Scholar 

  26. Cui M, Lin Y (2009) Nonlinear numerical analysis in the reproducing Kernel space. Nova Science Publisher, New York

    MATH  Google Scholar 

  27. Daniel A (2003) Reproducing Kernel spaces and applications. Springer, Basel. doi:10.1007/978-3-0348-8077-0

    MATH  Google Scholar 

  28. Diamond P (1999) Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Trans Fuzzy Syst 7:734–740. doi:10.1109/91.811243

    Article  Google Scholar 

  29. Friedman M, Ma M, Kandel A (1999) Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48. doi:10.1016/S0165-0114(98)00355-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Gasilov N, Amrahov ŞE, Fatullayev AG (2014) Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Syst 257:169–183. doi:10.1016/j.fss.2013.08.008

    Article  MathSciNet  MATH  Google Scholar 

  31. Gasilov N, Amrahov ŞE, Fatullayev AG, Hashimoglu IF (2015) Solution method for a boundary value problem with fuzzy forcing function. Inf Sci 317:349–368. doi:10.1016/j.ins.2015.05.002

    Article  MathSciNet  MATH  Google Scholar 

  32. Geng F (2009) Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method. Appl Math Comput 215:2095–2102. doi:10.1016/j.amc.2009.08.002

    MathSciNet  MATH  Google Scholar 

  33. Geng F, Cui M (2012) A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett 25:818–823. doi:10.1016/j.aml.2011.10.025

    Article  MathSciNet  MATH  Google Scholar 

  34. Geng F, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004. doi:10.1016/j.aml.2013.05.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Geng F, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105. doi:10.1016/j.cam.2013.04.040

    Article  MathSciNet  MATH  Google Scholar 

  36. Goetschel R, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18:31–43. doi:10.1016/0165-0114(86)90026-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Hajighasemi S, Allahviranloo T, Khezerloo M, Khorasany M, Salahshour S (2010) Existence and uniqueness of solutions of fuzzy Volterra integro-differential equations. Appl Commun Comput Inf Sci 81:491–500. doi:10.1007/978-3-642-14058-7_51

    MATH  Google Scholar 

  38. Hoa NV, Phu ND (2014) Fuzzy functional integro-differential equations under generalized H-differentiability. J Intell Fuzzy Syst 26:2073–2085. doi:10.3233/IFS-130883

    MathSciNet  MATH  Google Scholar 

  39. Hüllermeier E (1997) An approach to modelling and simulation of uncertain systems. Int J Uncertain Fuzziness Knowl-Based Syst 5:117–137. doi:10.1142/S0218488597000117

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230. doi:10.1016/j.amc.2013.03.123

    MathSciNet  MATH  Google Scholar 

  41. Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numerical Methods Partial Differ Equ 30:289–300. doi:10.1002/num.21809

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317. doi:10.1016/0165-0114(87)90029-7

    Article  MathSciNet  MATH  Google Scholar 

  43. Khastan A, Rodríguez-López R (2015) On Periodic solutions to first order linear fuzzy differential equations under differential inclusions’ approach. Inf Sci 322:31–50. doi:10.1016/j.ins.2015.06.003

    Article  MathSciNet  Google Scholar 

  44. Li C, Cui M (2003) The exact solution for solving a class nonlinear operator equations in the reproducing kernel space. Appl Math Comput 143:393–399. doi:10.1016/S0096-3003(02)00370-3

    MathSciNet  MATH  Google Scholar 

  45. Mizukoshi MT, Barros LC, Chalco-Cano Y, Román-Flores H, Bassanezi RC (2007) Fuzzy differential equations and the extension principle. Inf Sci 177:3627–3635. doi:10.1016/j.ins.2007.02.039

    Article  MathSciNet  MATH  Google Scholar 

  46. Momani S, Abu Arqub O, Hayat T, Al-Sulami H (2014) A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl Math Comput 240:229–239. doi:10.1016/j.amc.2014.04.057

    MathSciNet  MATH  Google Scholar 

  47. Mosleh M, Otadi M (2015) Approximate solution of fuzzy differential equations under generalized differentiability. Appl Math Model 39:3003–3015. doi:10.1016/j.apm.2014.11.035

    Article  MathSciNet  MATH  Google Scholar 

  48. Nieto JJ, Khastan A, Ivaz K (2009) Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal Hybrid Syst 3:700–707. doi:10.1016/j.nahs.2009.06.013

    Article  MathSciNet  MATH  Google Scholar 

  49. Oberguggenberger M, Pittschmann S (1999) Differential equations with fuzzy parameters. Math Comput Modell Dyn Syst 5:181–202. doi:10.1076/mcmd.5.3.181.3683

    Article  MATH  Google Scholar 

  50. Puri ML (1986) Fuzzy random variables. J Math Anal Appl 114:409–422. doi:10.1016/0022-247X(86)90093-4

    Article  MathSciNet  MATH  Google Scholar 

  51. Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91:552–558. doi:10.1016/0022-247X(83)90169-5

    Article  MathSciNet  MATH  Google Scholar 

  52. Qiu D, Zhang W, Lu C (2015) On fuzzy differential equations in the quotient space of fuzzy numbers. Fuzzy Sets Syst. doi:10.1016/j.fss.2015.03.010

  53. Rahimi HR, Khezerloo M, Khezerloo S (2011) Approximating the fuzzy solution of the non-linear fuzzy Volterra integro-differential equation using fixed point theorems. Int J Ind Math 3:227–236

    Google Scholar 

  54. Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330. doi:10.1016/0165-0114(87)90030-3

    Article  MathSciNet  MATH  Google Scholar 

  55. Shawagfeh N, Abu Arqub O, Momani S (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16:750–762

    MathSciNet  MATH  Google Scholar 

  56. Song S, Wu C (2000) Existence and uniqueness of solutions to the Cauchy problem of fuzzy differential equations. Fuzzy Set Syst 110:55–67. doi:10.1016/S0165-0114(97)00399-0

    Article  MathSciNet  MATH  Google Scholar 

  57. Weinert HL (1982) Reproducing Kernel Hilbert spaces: applications in statistical signal processing. Hutchinson Ross Publishing Company, Stroudsburg

    Google Scholar 

Download references

Acknowledgments

The author would like to express his gratitude to the unknown referees for carefully reading the paper and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Arqub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Arqub, O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput & Applic 28, 1591–1610 (2017). https://doi.org/10.1007/s00521-015-2110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2110-x

Keywords

Mathematics Subject Classification

Navigation