Skip to main content
Log in

Single-objective optimization framework for designing photonic crystal filters

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work presents a single-objective optimization framework for designing complex photonic crystal (PhC) filters. As a case study, a super defect PhC filter with five rods is considered. Due to the large number of structural parameters and complexity of designing process, the problem is formulated and optimized by using a recent optimization algorithm called multi-verse optimizer (MVO). Six optimal super defect filters are obtained by MVO with respect to the WDM standard, which is defined by ITU-T Recommendation G.694.2. The designed super defect filters are then placed side by side to implement WDM. The results of FDTD simulation of the designed WDM show that the magnitude of output spectral transmission is higher than that of the current works in the literature. In addition, the high-quality factor and low crosstalk value (−32.9 dB) are the other advantages of the designed WDM with optimal super defect filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robinson S, Nakkeeran R (2012) Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik 123:451–457. doi:10.1016/j.ijleo.2011.05.004

    Article  Google Scholar 

  2. Alipour-Banaei H, Mehdizadeh F (2012) A proposal for anti-UVB filter based on one-dimensional photonic crystal structure. Dig J Nanomater Biostruct 7:361–371

    Google Scholar 

  3. Mirjalili SM (2014) SoMIR framework for designing high-NDBP photonic crystal waveguides. Appl Opt 53:3945–3953. doi:10.1364/AO.53.003945

    Article  Google Scholar 

  4. Mirjalili SM, Mirjalili S, Lewis A (2014) A novel multi-objective optimization framework for designing photonic crystal waveguides. IEEE Photon Technol Lett 26:146–149. doi:10.1109/LPT.2013.2290318

    Article  Google Scholar 

  5. Mirjalili SM, Mirjalili SZ (2016) Asymmetric oval-shaped-hole photonic crystal waveguide design by artificial intelligence optimizers. IEEE J Sel Top Quantum Electron 22:4900407. doi:10.1109/JSTQE.2015.2469760

    Article  Google Scholar 

  6. Mirjalili SM, Mirjalili S, Mirjalili SZ (2015) How to design photonic crystal LEDs with artificial intelligence techniques. Electron Lett 51:1437–1439. doi:10.1049/el.2015.1679

    Article  Google Scholar 

  7. Saremi S, Mirjalili SM, Mirjalili S (2014) Unit cell topology optimization of line defect photonic crystal waveguide. Proced Technol 12:174–179. doi:10.1016/j.protcy.2013.12.472

    Article  Google Scholar 

  8. Mirjalili SM, Mirjalili SZ (2015) Full optimizer for designing photonic crystal waveguides: IMoMIR framework. IEEE Photon Technol Lett 27:1776–1779. doi:10.1109/LPT.2015.2443073

    Article  Google Scholar 

  9. Bazargani HP (2012) Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt Commun 285:1848–1853. doi:10.1016/j.optcom.2011.12.002

    Article  Google Scholar 

  10. Rostami A, Banaei HA, Nazari F, Bahrami A (2011) An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik (Stuttg) 122:1481–1485. doi:10.1016/j.ijleo.2010.05.036

    Article  Google Scholar 

  11. Cheng SC, Wang JZ, Chen LW, Wang CC (2012) Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik (Stuttg) 123:1928–1933. doi:10.1016/j.ijleo.2011.09.036

    Article  Google Scholar 

  12. Rostami A, Nazari F, Banaei HA, Bahrami A (2010) A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photon Nanostruct Fundam Appl 8:14–22

    Article  Google Scholar 

  13. Rawal S, Sinha RK (2009) Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt Commun 282:3889–3894

    Article  Google Scholar 

  14. Momeni B, Huang J, Soltani M et al (2006) Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt Express 14:2413–2422

    Article  Google Scholar 

  15. Wang Z, Fan S (2005) Optical circulators in two-dimensional magneto-optical photonic crystals. Opt Lett 30:1989–1991. doi:10.1364/OL.30.001989

    Article  Google Scholar 

  16. Bayindir M, Temelkuran B, Ozbay E (2000) Photonic-crystal-based beam splitters. Appl Phys Lett 77:3902–3904

    Article  Google Scholar 

  17. Ahmadi Tameh T, Isfahani BM, Granpayeh N, Javan AM (2011) Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEU Int J Electron Commun 65:281–287

    Article  Google Scholar 

  18. Rezaei B, Kalafi M (2006) Engineering absolute band gap in anisotropic hexagonal photonic crystals. Opt Commun 266:159–163

    Article  Google Scholar 

  19. Liu W-L, Liou Y-Y, Wei J-C, Yang T-J (2009) Band gap studies of 2D photonic crystals with hybrid scatterers. Phys B Condens Matter 404:4237–4242

    Article  Google Scholar 

  20. Wu Z, Xie K, Yang H (2012) Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt J Light Electron Opt 123:534–536

    Article  Google Scholar 

  21. Liu D, Gao Y, Gao D, Han X (2012) Photonic band gaps in two-dimensional photonic crystals of core-shell-type dielectric nanorod heterostructures. Opt Commun 285:1988–1992

    Article  Google Scholar 

  22. Mehdizadeh F, Alipour-Banaei H (2013) Bandgap management in two-dimensional photonic crystal Thue-Morse structures. J Opt Commun 34:61–65

    Article  Google Scholar 

  23. Dutton HJR (1998) Understanding optical communications. Prentice Hall PTR, New Jersey

    Google Scholar 

  24. Chaudhari AJ, Darvas F, Bading JR et al (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421

    Article  Google Scholar 

  25. Woltman SJ, Jay GD, Crawford GP (2007) Liquid-crystal materials find a new order in biomedical applications. Nat Mater 6:929–938

    Article  Google Scholar 

  26. Gat N (2000) Imaging spectroscopy using tunable filters: a review. AeroSense 2000. International Society for Optics and Photonics, pp 50–64

  27. Kurosaki H, Koshiishi H, Suzuki T, Tsuchiya K (2003) Development of tunable imaging spectro-polarimeter for remote sensing. Adv Sp Res 32:2141–2146

    Article  Google Scholar 

  28. Paloczi G, Huang Y, Yariv A, Mookherjea S (2003) Polymeric Mach–Zehnder interferometer using serially coupled microring resonators. Opt Express 11:2666–2671. doi:10.1364/OE.11.002666

    Article  Google Scholar 

  29. Djavid M, Monifi F, Ghaffari A, Abrishamian MS (2008) Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt Commun 281:4028–4032. doi:10.1016/j.optcom.2008.04.045

    Article  Google Scholar 

  30. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S (2013) Channel-drop filter based on a photonic crystal ring resonator. J Opt 15:075401. doi:10.1088/2040-8978/15/7/075401

    Article  Google Scholar 

  31. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M (2014) A new proposal for PCRR-based channel drop filter using elliptical rings. Phys E Low-dimensional Syst Nanostruct 56:211–215. doi:10.1016/j.physe.2013.07.018

    Article  Google Scholar 

  32. Alipour-Banaei H, Mehdizadeh F (2013) Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik 124:2639–2644. doi:10.1016/j.ijleo.2012.07.029

    Article  Google Scholar 

  33. Kuo C-W, Chang C-F, Chen M-H et al (2007) A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures. Opt Express 15:198–206. doi:10.1364/OE.15.000198

    Article  Google Scholar 

  34. Djavid M, Mirtaheri SA, Abrishamian MS (2009) Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J Opt Soc Am B 26:849. doi:10.1364/JOSAB.26.000849

    Article  Google Scholar 

  35. Jiang L, Wu H, Jia W, Li X (2012) Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik. doi:10.1016/j.ijleo.2012.06.005

    Google Scholar 

  36. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci (NY) 269:188–209. doi:10.1016/j.ins.2014.01.038

    Article  MathSciNet  Google Scholar 

  37. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic Krill Herd optimization algorithm. Proced Technol 12:180–185. doi:10.1016/j.protcy.2013.12.473

    Article  Google Scholar 

  38. Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1870-7

  39. Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25:663–681. doi:10.1007/s00521-013-1525-5

    Article  Google Scholar 

  40. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. doi:10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  41. Notomi M, Tanabe T, Shinya A et al (2008) On-chip all-optical switching and memory by silicon photonic crystal nanocavities. Adv Opt Technol 2008:1–10. doi:10.1155/2008/568936

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mirjalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirjalili, S.M., Mirjalili, S.Z. Single-objective optimization framework for designing photonic crystal filters. Neural Comput & Applic 28, 1463–1469 (2017). https://doi.org/10.1007/s00521-015-2147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2147-x

Keywords

Navigation