Skip to main content
Log in

Cloud computing system risk estimation and service selection approach based on cloud focus theory

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The main cloud computing service providers usually provide cross-regional and services of Crossing Multi-Internet Data Centers that supported with selection strategy of service level agreement risk constraint. But the traditional quality of service (QoS)-aware Web service selection approach cannot ensure the real-time and the reliability of services selection. We proposed a cloud computing system risk assessment method based on cloud theory, and generated the five property clouds by collecting the risk value and four risk indicators from each virtual machine. The cloud backward generator integrated these five clouds into one cloud, according to the weight matrix. So the risk prediction value is transferred to the risk level quantification. Then we tested the Web service selection experiments by using risk assessment level as QoS mainly constraint and comparing with LRU and MAIS methods. The result showed that the success rate and efficiency of risk assessment with cloud focus theory Web services selection approaches are more quickly and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig..6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garg SK, Toosi AN, Gopalaiyengar SK, Buyya R (2014) SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. J Netw Comput Appl 45:108–120. doi:10.1016/j.jnca.2014.07.030

    Article  Google Scholar 

  2. Emeakaroha VC, Netto MAS, Calheiros RN, Ivona B, Rajkumar B, De Rose Cesar AF (2012) Towards autonomic detection of SLA violations in cloud infrastructures. Future Gener Comput Syst Int J Grid Comput Esci 28(7):1017–1029. doi:10.1016/j.future.2011.08.018

    Article  Google Scholar 

  3. Liu F, Lei Z (2009) Research on user-aware QoS based Web services composition. J China Univ Posts Telecommun 16(5):125–130

    Article  MathSciNet  Google Scholar 

  4. Haiteng Z, Zhiqing S, Hong Z, Jie Z (2014) Web service reputation evaluation based on QoS measurement. Sci World J. doi:10.1155/2014/373902

    Google Scholar 

  5. Sioutas S, Sakkopoulos E, Makris C, Vassiliadis B, Tsakalidis A, Triantafillou P (2009) Dynamic Web service discovery architecture based on a novel peer based overlay network. J Syst Softw 82(5):809–824. doi:10.1016/j.jss.2008.11.845

    Article  Google Scholar 

  6. Nill S, Wahidabanu RSD (2013) Towards context aware QOS-based web service description and discovery. J Internet Technol 14(4):673–686. doi:10.6138/JIT.2013.14.4.12

    Google Scholar 

  7. Guofeng Y, Yuxing P, Shuhong C, Pengfei Y (2015) QoS evaluation of end-to-end services in virtualized computing environments: a stochastic model approach. Int J Web Serv Res 12(1):27–44. doi:10.4018/IJWSR.2015010103

    Article  Google Scholar 

  8. Yanan H, Yanchun Z, Jinli C (2012) A novel QoS model and computation framework in web service selection. World Wide Web Internet Web Inf Syst 15(5–6):663–684. doi:10.1007/s11280-012-0157-5

    Google Scholar 

  9. Habich D, Lehner W, Richly S, Assmann U (2010) Using cloud technologies to optimize data-intensive service applications. In: 3rd IEEE international conference on cloud computing (CLOUD 2010), pp. 19–26

  10. Andrzej G, Michael B (2010) Toward dynamic and attribute based publication, discovery and selection for cloud computing. Future Gener Comput Syst 26:947–970. doi:10.1016/j.future.2010.03.009

    Article  Google Scholar 

  11. Cardellini V, Casalicchio E, Grassi V, Presti FL (2007) Flow-based service selection for webservice composition supporting multiple QoS classes. In: 2007 IEEE international conference on web services, proceedings (ICWS 2007), pp 743–750

  12. Amin J, Elankovan S, Zalinda O (2014) Cloud computing service composition: a systematic literature review. Exp Syst Appl 41(8):3809–3824. doi:10.1016/j.eswa.2013.12.017

    Article  Google Scholar 

  13. Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178(13):2751–2779. doi:10.1016/j.ins.2008.02.012

    Article  MathSciNet  MATH  Google Scholar 

  14. Li D, Liu C, Gan W (2009) A new cognitive model: cloud model. Int J Intell Syst 24(3):357–375. doi:10.1002/int.20340

    Article  MATH  Google Scholar 

  15. Chao-Hui Y, De-Yi L (1998) Planar model and its application in prediction. Chin J Comput 21(11):961–969

    Google Scholar 

  16. Qi Yu, Athman B (2010) Computing service skyline from uncertain QoWS. IEEE Trans Serv Comput 3(1):16–29. doi:10.1109/TSC.2010.7

    Article  Google Scholar 

  17. Zheng Z, Zhang Y, Lyu MR (2010) CloudRank: A QoS-driven component ranking framework for cloud computing. In: 2010 29th IEEE international symposium on reliable distributed systems (SRDS 2010), pp 184–193. doi:10.1109/SRDS.2010.29

  18. Zibin Z, Chao ZT, Lyu MR, Irwin K (2012) Component ranking for fault-tolerant cloud applications. IEEE Trans Serv Comput 5(4):540–550. doi:10.1109/TSC.2011.42

    Article  Google Scholar 

  19. Danilo A, Barbara P (2007) Adaptive service composition in flexible processes. IEEE Trans Softw Eng. Issue 6(33):369–384. doi:10.1109/TSE.2007.101

    Google Scholar 

  20. Zhong LZ, Jia ZP, Xiao X, An Ji Yu (2015) Reliable Web service composition based on QoS dynamic prediction. Soft Comput 19(5):1409–1425. doi:10.1007/s00500-014-1351-4

    Article  Google Scholar 

  21. Steffen H, Christof W (2014) Optimizing customized services: efficient computation in large service value networks. Inf Syst E-Bus Manag 12(3):307–335. doi:10.1007/s10257-013-0218-z

    Article  Google Scholar 

  22. Alrifai M, Risse T (2009) Efficient QoS-aware service composition. Emerging Web Services Technology. In: 3rd workshop on emerging web services technology/6th European conference on web services, vol 3, pp 75–87

  23. Wu J, Chen L, Liang T (2014) Selecting dynamic skyline services for QoS-based service composition. Appl Math Inf Sci 8(5):2579–2588

  24. Salimi AJ, Isazadeh A, Karimpour J (2011) Admission control for webservices in enterprise systems using expert systems, Web information systems and mining (PT I). In: International conference on web information systems and mining (WISM 2011), vol 6987, pp 192–199

  25. Selcuk K, Li W-S, Phan T, Zhou M (2009) Frontiers in information and software as services. In: ICDE: 2009 IEEE 25th international conference on data engineering, vols. 1–3, pp 1761–1768

  26. Carlo G, Panzica LMV, Alfredo M, Giordano T (2015) Performance-driven dynamic service selection. Concurr Comput Pract Exp 27(3):633–650. doi:10.1002/cpe.3259

    Article  Google Scholar 

  27. Li D, Cheung D, Shi XM, Ng V (1998) Uncertainty reasoning based on cloud models in controllers. Comput Math Appl 35(3):99–123. doi:10.1016/S0898-1221(97)00282-4

    Article  MATH  Google Scholar 

  28. Zheng Z, Lyu M (2010) Collaborative reliability prediction of service-oriented systems. In: 32nd ACM/IEEE international conference on software engineering (ICSE 2010), pp 35–44

  29. Seokho S, Gihun J, Chan JS (2013) An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider. J Supercomput 64(2):606–637. doi:10.1007/s11227-012-0861-z

    Article  Google Scholar 

  30. Emeakaroha VC, Ivona B, Michael M, Schahram D (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract Exp 25(10):1462–1481. doi:10.1002/cpe.2944

    Article  Google Scholar 

  31. Zhang CS, Sen CJ (2007) GAMi: genetic algorithm-based middleware for QoS-aware web services selection. Chin J Electron 16(3):537–542

    Google Scholar 

  32. Chia-Feng L, Ruey-Kai S, Yue-Shan C, Shyan-Ming Y (2011) A relaxable service selection algorithm for QoS-based web service composition. Inf Softw Technol 53(12):1370–1381. doi:10.1016/j.infsof.2011.06.010

    Article  Google Scholar 

  33. Sioutas S, Sakkopoulos E, Makris Ch, Vassiliadis B, Tsakalidis A, Triantafillou P (2009) Dynamic web service discovery architecture based on a novel peer based overlay network. J Syst Softw 82(5):809–824. doi:10.1016/j.jss.2008.11.845

    Article  Google Scholar 

  34. Kritikos K, Plexousakis D (2009) Requirements for QoS-based web service description and discovery. IEEE Trans Serv Comput 2(4):320–337. doi:10.1109/TSC.2009.26

    Article  Google Scholar 

  35. Yunni X, MengChu Z, Xin L, Qingsheng Z, Jia L, Huang Yu (2015) Stochastic modeling and quality evaluation of infrastructure-as-a-service clouds. IEEE Trans Autom Sci Eng 12(1):162–170. doi:10.1109/TASE.2013.2276477

    Article  Google Scholar 

  36. Chengying M, Jifu C, Dave T, Jinfu C, Xiaoyuan X (2015) Search-based QoS ranking prediction for web services in cloud environments. Future Gener Comput Syst Int J Grid Comput Esci 50:111–126. doi:10.1016/j.future.2015.01.008

    Article  Google Scholar 

  37. Dandan W, Yang Y, Zhenqiang M (2015) QoS-based and network-aware web service composition across cloud datacenters. KSII Trans Internet Inf Syst 9(3):971–989. doi:10.3837/tiis.2015.03.008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Zeng, W., Yang, L. et al. Cloud computing system risk estimation and service selection approach based on cloud focus theory. Neural Comput & Applic 28, 1863–1876 (2017). https://doi.org/10.1007/s00521-015-2166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2166-7

Keywords

Navigation