Skip to main content
Log in

A hybrid approach based on tissue P systems and artificial bee colony for IIR system identification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a hybrid approach for infinite impulse response (IIR) system identification, called ABC-PS, that combines artificial bee colony (ABC) and tissue P systems. A tissue P system with fully connected structure of cells has been considered as its computing framework. A modification of ABC was developed as evolution rules for objects according to fully connected structure and communication mechanism. With the control of the object’s evolution-communication mechanism, the tissue P system designed can effectively and efficiently identify the optimal filter coefficients for an IIR system. The performance of ABC-PS was compared with artificial bee colony and several other evolutionary algorithms. Simulation results show that ABC-PS is superior or comparable to the other algorithms for the employed examples and can be efficiently used for IIR system identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Widrow B, Strearns SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Regalia PA (1992) Stable and efficient lattice algorithms for adaptive iir filtering. IEEE Trans Signal Process 40:375–388

    Article  Google Scholar 

  3. Shynk JJ (1989) Adaptive iir filtering using parallel-form realizations. IEEE Trans Acoust Speech Signal Process 37:519–533

    Article  Google Scholar 

  4. Ma Q, Cowan CFN (1996) Genetic algorithms applied to the adaptation of IIR filters. Signal Process 48:155–163

    Article  MATH  Google Scholar 

  5. Ng SC, Leung SH, Chung CY, Luk A, Lau WH (1996) The genetic search approach: a new learning algorithm for adaptive IIR filtering. IEEE Signal Process Mag 13:38–46

    Article  Google Scholar 

  6. Tang KS, Man KF, Kwong S, Liu ZF (1998) Design and optimization of IIR filter structure using hierarchical genetic algorithms. IEEE Trans Ind Electron 45(3):481–487

    Article  Google Scholar 

  7. Karaboga N, Kalinli A, Karaboga D (2004) Designing digital IIR filters using ant colony optimization algorithm. Eng Appl Artif Intell 17:301–309

    Article  MATH  Google Scholar 

  8. Karaboga N (2005) Digital IIR filter design using differential evolution algorithm. EURASIP J Appl Signal Process 8:1269–1276

    Article  MATH  Google Scholar 

  9. Kalinli A, Karaboga N (2005) Artificial immune algorithm for IIR filter design. Eng Appl Artif Intell 18:919–929

    Article  MATH  Google Scholar 

  10. Krusienski DJ, Jenkins WK (2006) A modified particle swarm optimization algorithm for adaptive filtering. In: IEEE International symposium on circuits and systems, ISCAS2006, pp. 137–140

  11. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital iir filters. J Frankl Inst 346:328–348

    Article  MathSciNet  MATH  Google Scholar 

  12. Panda G, Pradhan PM, Majhi B (2011) IIR system identification using cat swarm optimization. Expert Syst Appl 38:12671–12683

    Article  Google Scholar 

  13. Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: Proceedings of the world congress on computational intelligence, pp. 3954–3961

  14. Luitel B, Venayagamoorthy GK (2010) Particle swarm optimization with quantum infusion for system identification. Eng Appl Artif Intell 23:635–649

    Article  Google Scholar 

  15. Majhi B, Panda G (2010) Development of efficient identification scheme for nonlinear dynamic systems using swarm intelligence techniques. Expert Syst Appl 37:556–566

    Article  Google Scholar 

  16. Pǎun Gh (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MathSciNet  MATH  Google Scholar 

  17. Pǎun Gh, Pérez-Jiménez MJ (2006) Membrane computing: brief introduction, recent results and applications. BioSystem 85:11–22

    Article  Google Scholar 

  18. Pǎun Gh, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrance computing. Oxford University Press, New York

    MATH  Google Scholar 

  19. Pan L, Wang J, Hoogeboom HJ (2012) Spiking neural P systems with astrocytes. Neural Comput 24(3):805–825

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng X, Zhang X, Song T, Pan L (2014) Spiking neural P systems with thresholds. Neural Comput 26:1340–1361

    Article  MathSciNet  Google Scholar 

  21. Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T (2013) Fuzzy reasoning spiking neural P system for fault diagnosis. Inf Sci 235:106–116

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang J, Shi P, Peng H, Pérez-Jiménez MJ, Wang T (2013) Weighted fuzzy spiking neural P systems. IEEE Trans Fuzzy Syst 21(2):209–220

    Article  Google Scholar 

  23. Zhang X, Wang S, Niu Y, Pan L (2011) Tissue P systems with cell separation: attacking the partition problem. Sci China Inf Sci 54(2):293–304

    Article  MATH  Google Scholar 

  24. Song T, Macías-Ramos LF, Pan L, Pérez-Jiménez MJ (2014) Time-free solution to SAT problem using P systems with active membranes. Theor Comput Sci 529:61–68

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang X, Liu Y, Luo B, Pan L (2014) Computational power of tissue P systems for generating control languages. Inf Sci 278(10):285–297

    Article  MathSciNet  MATH  Google Scholar 

  26. Nishida TY (2006) Membrane algorithms, vol 3850. Springer, Berlin, pp 55–66

    MATH  Google Scholar 

  27. Zhang G, Gheorghe M, Wu C (2008) A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundam Inf 87(1):93–116

    MathSciNet  MATH  Google Scholar 

  28. Zhang G, Cheng J, Gheorghe M, Meng Q (2013) A hybrid approach based on different evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Appl Soft Comput 13(3):1528–1542

    Article  Google Scholar 

  29. Peng H, Wang J, Pérez-Jiménez MJ, Shi P (2013) A novel image thresholding method based on membrane computing and fuzzy entropy. J Intell Fuzzy Syst 24(2):229–237

    Google Scholar 

  30. Peng H, Wang J, Pérez-Jiménez MJ, Riscos-Núñez A (2014) The framework of P systems applied to solve optimal watermarking problem. Signal Process 101:256–265

    Article  Google Scholar 

  31. Peng H, Wang J, Pérez-Jiménez MJ (2015) Optimal multi-level thresholding with membrane computing. Digital Signal Process 37:53–64

    Article  Google Scholar 

  32. Peng H, Wang J, Pérez-Jiménez MJ, Riscos-Núñez A (2015) An unsupervised learning algorithm for membrane computing. Inf Sci 304:80–91

    Article  MATH  Google Scholar 

  33. Peng H, Jiang Y, Wang J, Pérez-Jiménez MJ, Riscos-Núñez A (2015) Membrne clustering algorithm with hybrid evolutionary mechanisms. J Softw 26(5):1001–1012

    MathSciNet  MATH  Google Scholar 

  34. Peng H, Wang J, Shi P, Riscos-Núñez A, Pérez-Jiménez MJ (2015) An automatic clustering algorithm inspired by membrane computing. Pattern Recognit Lett 68:34–40

    Article  Google Scholar 

  35. Martín-Vide C, Pǎun Gh, Pazos J, Rodrguez-Patón A (2003) Tissue P systems. Theor Comput Sci 296:295–326

    Article  MathSciNet  MATH  Google Scholar 

  36. Bernardini F, Gheorghe M (2005) Cell communication in tissue P systems: universality results. Soft Comput 9:640–649

    Article  MATH  Google Scholar 

  37. Díaz-Pernil D, Gutiérrez MA, Pérez-Jiménez MJ, Riscos-Núňez A (2008) A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theor Comput Sci 404:76–87

    Article  MathSciNet  MATH  Google Scholar 

  38. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–C471

    Article  MathSciNet  MATH  Google Scholar 

  39. Gao W, Liu S (2012) A modified artificial bee colony algorithm. Comput Oper Res 39:687–697

    Article  MATH  Google Scholar 

  40. Alizadegan A, Asady B, Ahmadpour M (2013) Two modified versions of artificial bee colony algorithm. Appl Math Comput 225:601–609

    MathSciNet  MATH  Google Scholar 

  41. Lin C, Su S (2012) Using an efficient artificial bee colony algorithm for protein structure Pprediction on lattice Mmodels. Int J Innov Comput Inf Control 8(3B):2049–2064

    Google Scholar 

  42. Tien J, Li TS (2013) Hybrid taguchi-chaos of artificial bee colony algorithm for global numerical optimization. Int J Innov Comput Inf Control 9(6):2665–2688

    Google Scholar 

  43. Krusienski DJ, Jenkins WK (2004) Particle swarm optimization algorithm for adaptive iir filter structures. In: Processing of the IEEE congress on evolutionary computation, pp. 965–970

  44. Shynk JJ (1989) Adaptive IIR filtering. IEEE Acoustics, Speech and Signal Processing Magazine 6(2):4–21

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 61170030 and 61472328) and Research Fund of Sichuan Science and Technology Project (No. 2015HH0057), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Wang, J. A hybrid approach based on tissue P systems and artificial bee colony for IIR system identification. Neural Comput & Applic 28, 2675–2685 (2017). https://doi.org/10.1007/s00521-016-2201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2201-3

Keywords

Navigation