Skip to main content
Log in

Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The demand for the maritime transportation has significantly increased over the past 20 years due to the rapid pace of globalization. Terminal managers confront the challenge in establishing the appropriate berth and quay crane (QC) coordinated schedule to achieve the earliest departure time of ship and to provide efficient service. In this paper, we propose a multi-objective berth and QC coordinated scheduling model, namely M-B&QC, by taking the minimum additional trucking distance and the port time of ships as the optimization objectives, with the constraints based on demand of port operations and vessel berthing. To solve the M-B&QC model, the particle coding rule and the particle feasible-integer processing module (namely PF-IP) for improving PSO performance are employed to determine the computation strategies of individual historical optimal value \(p_{i}^{G}\) and global optimal value \(P_{g}^{G}\) of particle for the multi-objective optimization. In addition, the global disturbance with cat mapping function (namely GDCM) and local search with cloud model (namely LSCM) are also hybridized, namely PM&CCPSO algorithm, to solve the M-B&QC model. Numerical experiments including eight combined examples are conducted to test the performance of the proposed programming model and the modified solving algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han XL, Lu ZQ, Xi LF (2010) A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur J Oper Res 207:1327–1340

    Article  MATH  Google Scholar 

  2. Vis IFA, Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–16

    Article  MATH  Google Scholar 

  3. Yang CX, Wang XJ, Li ZF (2012) An optimization approach for coupling problem of berth allocation and quay crane assignment in container terminal. Comput Ind Eng 63:243–253

    Article  Google Scholar 

  4. Li MW, Hong WC, Kang HG (2013) Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing 99:230–240

    Article  Google Scholar 

  5. Li MW, Kang HG, Zhou PH, Hong WC (2013) Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm. J Syst Eng Electron 24:324–334

    Article  Google Scholar 

  6. Li MW, Kang HG, Zhou PH (2013) Intersection traffic signal intelligent timing optimization based on chaos cloud particle swarm optimization algorithm. J Wuhan Unive Technol (Trans Sci Eng) 37:82–85

    Google Scholar 

  7. Lai KK, Shih K (1992) A study of container berth allocation. J Adv Trans 26:45–60

    Article  Google Scholar 

  8. Brown GG, Lawphongpanich S, Thurman KP (1994) Optimizing ship berthing. Naval Res Logist 41:1–15

    Article  MATH  Google Scholar 

  9. Brown GG, Cormican KJ, Lawphongpanich S, Widdis DB (1997) Optimizing submarine berthing with a persistence incentive. Naval Res Logist 44:301–318

    Article  MATH  Google Scholar 

  10. Imai A, Nagaiwa K, Tat CW (1997) Efficient planning of berth allocation for container terminals in Asia. J Adv Trans 31:75–94

    Article  Google Scholar 

  11. Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transp Res Part B 35:401–417

    Article  Google Scholar 

  12. Hansen P, Oğuz C, Mladenovic N (2008) Variable neighborhood search for minimum cost berth allocation. Eur J Oper Res 191:636–649

    Article  MATH  Google Scholar 

  13. Nishimura E, Imai A, Papadimitriou S (2001) Berth allocation planning in the public berth system by genetic algorithms. Eur J Oper Res 131:282–292

    Article  MATH  Google Scholar 

  14. Monaco MF, Sammarra M (2007) The berth allocation problem: a strong formulation solved by a Lagrangean approach. Trans Sci 41:265–280

    Article  Google Scholar 

  15. Cordeau JF, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-allocation problem. Trans Sci 39:526–538

    Article  Google Scholar 

  16. Imai A, Nishimura E, Papadimitriou S (2003) Berth allocation with service priority. Transp Res Part B 37:437–457

    Article  Google Scholar 

  17. Imai A, Nishimura E, Hattori M, Papadimitriou S (2007) Berth allocation at indented berths for mega-containerships. Eur J Oper Res 179:579–593

    Article  MATH  Google Scholar 

  18. Imai A, Nishimura E, Papadimitriou S (2008) Berthing ships at a multi-user container terminal with a limited quay capacity. Transp Res Part E 44:136–151

    Article  Google Scholar 

  19. Golias MM, Boile M, Theofains S (2010) A lambda-optimal based heuristic for the berth scheduling problem. Transp Res Part C 18:794–806

    Article  Google Scholar 

  20. Golias MM, Boile M, Theofains S (2009) Berthing scheduling by customer service differentiation: a multi-objective approach. Transp Res Part E 45:878–892

    Article  Google Scholar 

  21. Buhrkal K, Zuglian S, Ropke S, Larsen J, Lusby R (2011) Models for the discrete berth allocation problem: a computational comparison. Transp Res Part E 47:461–473

    Article  Google Scholar 

  22. Christensen CG, Holst CT (2008) Berth allocation in container terminals. Master’s thesis, Department of informatics and mathematical modelling, Technical University of Denmark, April (in Danish)

  23. Lim A (1998) The berth planning problem. Oper Res Lett 22:105–110

    Article  MathSciNet  MATH  Google Scholar 

  24. Li CL, Cai X, Lee CY (1998) Scheduling with multiple-job-on-one-processor pattern. IIE Trans 30:433–445

    Google Scholar 

  25. Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR Spectrum 26:75–92

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang F, Lim A (2007) A stochastic beam search for the berth allocation problem. Decis Support Syst 42:2186–2196

    Article  Google Scholar 

  27. Guan Y, Xiao WQ, Cheung RK, Li CL (2002) A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis. Oper Res Lett 30:343–350

    Article  MathSciNet  MATH  Google Scholar 

  28. Moon K (2000) A mathematical model and a heuristic algorithm for berth planning. Ph.D. Thesis, Pusan National University, Pusan

  29. Park KT, Kim KH (2002) Berth scheduling for container terminals by using a sub-gradient optimization technique. J Oper Res Soc 53:1054–1062

    Article  MATH  Google Scholar 

  30. Imai A, Sun X, Nishimura E, Papadimitriou S (2005) Berth allocation in a container port: using a continuous location space approach. Transp Res Part B 39:199–221

    Article  Google Scholar 

  31. Chang D, Yan W, Chen CH, Jiang Z (2008) A berth allocation strategy using heuristics algorithm and simulation optimization. Int J Comput Appl Technol 32:272–281

    Article  Google Scholar 

  32. Lee DH, Chen JH, Cao JX (2010) The continuous berth allocation problem: a greedy randomized adaptive search solution. Transp Res Part E 46:1017–1029

    Article  Google Scholar 

  33. Zhen L, Lee LH, Chew EP (2011) A decision model for berth allocation under uncertainty. Eur J Oper Res 212:54–68

    Article  Google Scholar 

  34. Imai A, Chen HC, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Transp Res Part E 44:900–920

    Article  Google Scholar 

  35. Zhou PF, Kang HG (2008) Study on berth and quay-crane allocation under stochastic environment in container terminal. Syst Eng Theory Pract 28:161–169

    Article  Google Scholar 

  36. Liang C, Huang Y, Yang Y (2009) A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput Ind Eng 56:1021–1028

    Article  Google Scholar 

  37. Park YM, Kim KH (2003) A scheduling method for berth and quay cranes. OR Spectrum 25:1–23

    Article  MathSciNet  MATH  Google Scholar 

  38. Oğuz C, Błazewicz J, Cheng TCE, Machowiak M (2004) Berth allocation as a moldable task scheduling problem. In: Proceedings of the ninth international workshop on project management and scheduling, Nancy, pp. 201–205

  39. Zhang C, Zheng L, Zhang Z, Shi L, Armstrong AJ (2010) The allocation of berths and quay cranes by using a sub-gradient optimization technique. Comput Ind Eng 58:40–50

    Article  Google Scholar 

  40. Chang D, Jiang Z, Yan W, He J (2010) Integrating berth allocation and quay crane assignments. Transp Res Part E 46:975–990

    Article  Google Scholar 

  41. Meisel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res Part E 45:196–209

    Article  Google Scholar 

  42. Zhang LB, Zhou CG, Ma M, Liu XH (2004) Solutions of multi objective optimization problems based on particle swarm optimization. J Comput Res Dev 41:1286–1291

    Google Scholar 

  43. Yang CX, Wang N (2010) Berth-quay crane allocation in container terminal based on multi-objective genetic algorithm. Appl Res Comput 27:1720–1722

    Google Scholar 

  44. Xue F, Chen G, Gao S (2011) Solving 0–1 integer programming problem by hybrid particle swarm optimization algorithm. Comput Technol Autom 30:86–89

    Google Scholar 

  45. Zhang HJ, Le ML (2012) Research on container berth-quay crane allocation based on multi-objective PSO. J Wuhan Univ Technol 34:59–64

    Google Scholar 

  46. Peng JL, Li RJ, Li XL, Ju CH (2014) A Study of archipelago berth allocation based on hybrid particle swarm optimization algorithm. Ind Eng J 17:17–22

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China(51509056), the Postdoctoral Science Foundation of China (2015M571394), the Heilongjiang Postdoctoral Fund (LBH-Z14059), the Fundamental Research Funds for the Central Universities (HEUCF150108), Science and Technology Project of Western Transportation Construction of Ministry of Communications (2014364554050), and Ministry of Science and Technology, Taiwan (MOST 104-2410-H-161-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MW., Hong, WC., Geng, J. et al. Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm. Neural Comput & Applic 28, 3163–3182 (2017). https://doi.org/10.1007/s00521-016-2226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2226-7

Keywords

Navigation