Skip to main content
Log in

Global adaptive neural tracking control of nonlinear MIMO systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the globally stable tracking control problem of a class of uncertain multiple-input–multiple-output nonlinear systems. By employing the radial basis function neural networks to compensate for the system uncertainties, a novel switching controller is developed. The key features of the proposed control scheme are presented as follows. First, to design the desired adaptive neural controller successfully, an nth-order smoothly switching function is constructed originally. Second, the number of the neural networks and the adaptive parameters is reduced by adopting the direct adaptive approach, so a simplified controller is designed and it is easy to implement in practice. By utilizing the special properties of the affine terms of the considered systems, the singularity problem of the controller is completely avoided. Finally, the overall controller guarantees that all the signals in the closed-loop system are globally uniformly ultimately bounded and the system output converges to a small neighborhood of the reference trajectory by appropriately choosing the design parameters. A simulation example is given to illustrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis FL, Jagannathan S, Yesildirek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor and Francis, New York

    Google Scholar 

  2. White DA, Sofge DA (1993) Handbook of intelligent control: neural, fuzzy, and adaptive applications. Van Nostrand and Reinhold, New York

    Google Scholar 

  3. Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, London

    Book  Google Scholar 

  4. Narendra KS, Annawamy AM (1990) Identification and control of dynamic systems using neural network. IEEE Trans Autom Control 1:4–27

    Google Scholar 

  5. Spooner JT, Passino KM (1996) Stable adaptive control using systems and neural networks. IEEE Trans Fuzzy Syst 4(3):339–359

    Article  Google Scholar 

  6. Chen FC, Khalil HK (1995) Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Trans Autom Control 40(5):791–801

    Article  MathSciNet  MATH  Google Scholar 

  7. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang D, Huang J (2002) Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica 38(8):1365–1372

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang CG, Ge SS, Xiang C, Chai TY, Lee TH (2008) Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):1873–1886

    Article  Google Scholar 

  10. Liu Y, Tong S, Wang D, Li T, Chen C (2011) Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans Neural Netw 22:1328–1334

    Article  Google Scholar 

  11. Ge SS, Yang C, Lee TH (2008) Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans Neur Netw 19(9):1599–1614

    Article  Google Scholar 

  12. Li Y, Yang C, Ge SS, Lee TH (2011) Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions. IEEE Trans Neural Netw 41(2):507–517

    Google Scholar 

  13. Liu YJ, Tong SC (2015) Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input. IEEE Trans Cybern 45(3):497–505

    Article  Google Scholar 

  14. Chen W, Jiao L, Li J, Li R (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern B Cybern 40(3):939–950

    Article  Google Scholar 

  15. Yang CG, Li ZJ, Li J (2013) Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans Cybern 43(1):24–36

    Article  Google Scholar 

  16. Hua C, Guan X, Shi P (2007) Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Trans Neural Netw 18(2):495–505

    Article  Google Scholar 

  17. Yang CG, Li ZJ, Cui R, Xu B (2014) Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans Neur Netw Learn Syst 25(11):2004–2016

    Article  Google Scholar 

  18. Ren B, Ge SS, Lee TH, Su CY (2009) Adaptive neural Control for a class of nonlinear systems with uncertain hysteresis inputs and time-varying state delays. IEEE Trans Neural Netw 20(7):1148–1164

    Article  Google Scholar 

  19. Ho DWC, Li J, Niu Y (2005) Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Trans Neural Netw 16(3):625–635

    Article  Google Scholar 

  20. Chen W, Li J (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern B Cybern 38(1):266

    Article  MathSciNet  Google Scholar 

  21. Hua CC, Guan XP (2008) Output feedback stabilization for time- delay nonlinear interconnected systems using neural networks. IEEE Trans Neural Netw 19(4):673–688

    Article  Google Scholar 

  22. Tong SC, Li YM, Zhang HG (2011) Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans Neural Netw 22(7):1073–1086

    Article  Google Scholar 

  23. Yoo SJ, Park JB (2009) Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans Syst Man Cybern B Cybern 39(5):1316–1323

    Article  Google Scholar 

  24. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Article  Google Scholar 

  25. Chen WS, Li JM (2010) Globally decentralized adaptive backstepping neural network tracking control for unknown nonlinear interconnected systems. Asian J Control 12(1):96–102

    MathSciNet  Google Scholar 

  26. Huang JT (2012) Global tracking control of strict-feedback systems using neural network. IEEE Trans Neural Netw Learn Syst 23(11):1714–1725

    Article  Google Scholar 

  27. Yoo SJ, Park JB, Choi YH (2008) Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans Neural Netw 19(10):1712–1726

    Article  Google Scholar 

  28. Tee KP, Ge SS, Tay EH (2008) Adaptive neural network control for helicopters in vertical flight. IEEE Trans Control Syst Technol 16(4):753–762

    Article  Google Scholar 

  29. Kim SH et al (2004) A robust adaptive nonlinear control approach to missile autopilot design. Control Eng Pract 12:149–154

    Article  Google Scholar 

  30. Isidori A (1995) Nonlinear control system, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Wang LX (1994) Adaptive fuzzy systems and control: design and analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  32. Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  33. Liu CC, Chen FC (1993) Adaptive control of nonlinear continuous-time systems using neural networks-general relative degree and MIMO cases. Int J Control 58:317–335

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen FC, Khalil HK (1995) Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Trans Autom Control 72:791–807

    Article  MathSciNet  MATH  Google Scholar 

  35. Narendra KS, Mukhopadhyay S (1994) Adaptive control of nonlinear multivariable system using neural networks. Neural Netw 7(5):737–752

    Article  MATH  Google Scholar 

  36. Sastry SS, Isidori A (1989) Adaptive control of linearizable systems. IEEE Trans Autom Control 34:1123–1131

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge SS, Hang CC, Zhang T (2000) Stable adaptive control for nonlinear multivariable systems with a triangular control structure. IEEE Trans Autom Control 45:1221–1225

    Article  MathSciNet  MATH  Google Scholar 

  38. Ge SS, Wang C (2004) Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Netw 15(3):674–692

    Article  Google Scholar 

  39. Liu YJ, Tang L, Tong SC, Chen CLP (2015) Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems. IEEE Trans Neur Netw Learn Syst 26(5):1007–1018

    Article  MathSciNet  Google Scholar 

  40. Liu YJ, Tang L, Tong SC, Chen CLP, Li DJ (2015) Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans Neural Netw Learn Syst 26(1):165–176

    Article  MathSciNet  Google Scholar 

  41. Chen M, Ge SS, How B (2010) Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neur Netw 21(5):796–812

    Article  Google Scholar 

  42. Zhang TP, Ge SS (2009) Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans Neural Netw 20(3):483–497

    Article  Google Scholar 

  43. Ge SS, Wang C (2002) Direct adaptive NN control of a class of nonlinear systems. IEEE Trans Neural Netw 13(1):214–221

    Article  Google Scholar 

  44. Nussbaum RD (1983) Some remarks on the conjecture in parameter adaptive control. Syst Control Lett 3(5):243–246

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen WS, Jiao LC, Wu JS (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  46. Spooner J, Maggiore M (2002) Stable adaptive control and estimation for nonlinear systems. Wiley, New York

    Book  Google Scholar 

  47. Sanner RM, Slotine JE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Netw 3(6):837–863

    Article  Google Scholar 

  48. Arqub OA, Mohammed AS, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4

    MATH  Google Scholar 

  49. Abo-Hammour Z, Alsmadi O, Momani S, Arqub OA (2013) A genetic algorithm approach for prediction of linear dynamical systems. Math Probl Eng 2013:1–12

    Article  Google Scholar 

  50. Arqub OA (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61174213, 61203074), Natural Science Foundation of Anhui Province (1608085MF144, 1608085QF131), and the Foundation of University Research and Innovation Platform Team for Intelligent Perception and Computing of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Su, B., Li, J. et al. Global adaptive neural tracking control of nonlinear MIMO systems. Neural Comput & Applic 28, 3801–3813 (2017). https://doi.org/10.1007/s00521-016-2268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2268-x

Keywords

Navigation