Skip to main content
Log in

Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The management of river water quality is one the most significant environmental challenges. Water quality index (WQI) describes several water quality variables at a certain aquatic environment and time. Classically, WQI is commonly computed using the traditional methods which involved lengthy computation, consume timing and occasionally associated with accidental errors during subindex calculation. Thus, providing an accurate prediction model for WQI is highly required. Recently, the artificial neural networks (ANNs) have been examined for similar prediction applications and exhibited a remarkable ability to capture the nonlinearity pattern between predictors and predictand. In the current research, two different ANN algorithms, namely radial basis function neural network (RBFNN) and back propagation neural networks models, have been applied to examine and mimic the relationship of WQI with the water quality variables in a tropical environment (Malaysia). The input variables categorized into two different architectures and have been inspected. In addition, comprehensive analysis for the performance evaluation and the sensitivity analysis of the variables have been conducted. The results achieved are positively promising with high performance accuracy belonging to RBFNN model for both scenarios. Furthermore, the proposed approach offers an effective alternative to compute and predict WQI, to the fact that WQI manual calculation methods involved lengthy computations, transformations, use of various subindex formulae for each value of the constituent water quality variables, and consuming time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kotti ME, Vlessidis AG, Thanasoulias NC, Evmiridis NP (2005) Assessment of river water quality in Northwestern Greece. Water Resour Manag 19:77–94. doi:10.1007/s11269-005-0294-z

    Article  Google Scholar 

  2. Niemi GJ, DeVore P, Detenbeck N et al (1990) Overview of case studies on recovery of aquatic systems from disturbance. Environ Manage 14:571–587. doi:10.1007/BF02394710

    Article  Google Scholar 

  3. Najah A, Elshafie A, Karim OA, Jaffar O (2009) Prediction of Johor River water quality parameters using artificial neural networks. Eur J Sci Res 28:422–435

    Google Scholar 

  4. Fahmi M, Nasir M, Samsudin MS et al (2011) River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): a case study at Klang River, Malaysia Department of Environmental Sciences, Faculty of Environmental Studies, Department of Environment. World Appl Sci J 14:73–82

    Google Scholar 

  5. Zali MA, Retnam A, Juahir H et al (2011) Sensitivity analysis for water quality index (WQI) prediction for Kinta River, Malaysia. World Appl Sci J 14:60–65

    Google Scholar 

  6. Behboudian S, Tabesh M, Falahnezhad M, Ghavanini FA (2014) A long-term prediction of domestic water demand using preprocessing in artificial neural network. J Water Supply Res Technol 63:31. doi:10.2166/aqua.2013.085

    Article  Google Scholar 

  7. Caselli M, Trizio L, Gennaro G, Ielpo P (2009) A simple feedforward neural network for the PM10 forecasting: comparison with a radial basis function network and a multivariate linear regression model. Water Air Soil Pollut 201:365–377. doi:10.1007/s11270-008-9950-2

    Article  Google Scholar 

  8. Albergaria JT, Martins FG, Alvim-Ferraz MCM, Delerue-Matos C (2014) Multiple linear regression and artificial neural networks to predict time and efficiency of soil vapor extraction. Water Air Soil Pollut. doi:10.1007/s11270-014-2058-y

    Google Scholar 

  9. Modarres R (2008) Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrol Earth Syst Sci Discuss 5:3449–3477. doi:10.5194/hessd-5-3449-2008

    Article  Google Scholar 

  10. Shrestha RR, Theobald S, Nestmann F (2005) Simulation of flood flow in a river system using artificial neural networks. Hydrol Earth Syst Sci 9:313–321. doi:10.5194/hess-9-313-2005

    Article  Google Scholar 

  11. Mwale FD, Adeloye AJ, Rustum R (2014) Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: the case of the Lower Shire floodplain, Malawi. Hydrol Res 45:838. doi:10.2166/nh.2014.168

    Article  Google Scholar 

  12. Cheng J, Li QS (2008) Reliability analysis of structures using artificial neural network based genetic algorithms. Comput Methods Appl Mech Eng 197:3742–3750. doi:10.1016/j.cma.2008.02.026

    Article  MATH  Google Scholar 

  13. Ahmad A, El-Shafie A, Mohd Razali SF, Mohamad ZS (2014) Reservoir optimization in water resources: a review. Water Resour Manag 28:3391–3405. doi:10.1007/s11269-014-0700-5

    Article  Google Scholar 

  14. Hossain MS, El-shafie A (2013) Intelligent systems in optimizing reservoir operation policy: a review. Water Resour Manag 27:3387–3407. doi:10.1007/s11269-013-0353-9

    Article  Google Scholar 

  15. Chau KW (2006) A review on integration of artificial intelligence into water quality modelling. Mar Pollut Bull 52:726–733. doi:10.1016/j.marpolbul.2006.04.003

    Article  Google Scholar 

  16. Rahim NA, Ahmad Z (2013) Features selection in water quality prediction in neural network using canonical correspondence analysis (CCA). The 6th international conference on process systems engineering (PSE ASIA), pp 25–27

  17. Hipni A, El-shafie A, Najah A et al (2013) Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS). Water Resour Manag 27:3803–3823. doi:10.1007/s11269-013-0382-4

    Article  Google Scholar 

  18. Kazemi Yazdi S, Scholz M (2010) Assessing storm water detention systems treating road runoff with an artificial neural network predicting fecal indicator organisms. Water Air Soil Pollut 206:35–47. doi:10.1007/s11270-009-0084-y

    Article  Google Scholar 

  19. Ye J, Zhang P, Hoffmann E et al (2014) Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption. Water Air Soil Pollut. doi:10.1007/s11270-014-2225-1

    Google Scholar 

  20. Lesven L, Lourino-Cabana B, Billon G et al (2009) Water-quality diagnosis and metal distribution in a strongly polluted zone of Deûle River (Northern France). Water Air Soil Pollut 198:31–44. doi:10.1007/s11270-008-9823-8

    Article  Google Scholar 

  21. Afan HA, El-Shafie A, Yaseen ZM et al (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1

    Article  Google Scholar 

  22. Yaseen ZM, El-Shafie A, Afan HA et al (2015) RBFNN versus FFNN for daily river flow forecasting at Johor River. Neural Comput Appl, Malaysia. doi:10.1007/s00521-015-1952-6

    Google Scholar 

  23. El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23:2289–2315. doi:10.1007/s11269-008-9382-1

    Article  Google Scholar 

  24. Sulaiman M, El-Shafie A, Karim O, Basri H (2011) Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour Manag 25:2525–2541

    Article  Google Scholar 

  25. Chen Q, Mynett AE (2003) Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecol Model 162:55–67. doi:10.1016/S0304-3800(02)00389-7

    Article  Google Scholar 

  26. Khalil B, Ouarda TBMJ, St-Hilaire A (2011) Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J Hydrol 405:277–287. doi:10.1016/j.jhydrol.2011.05.024

    Article  Google Scholar 

  27. Najah A, Karim OA, Jaafar O, El-shafie AH (2011) An application of different artificial intelligences techniques for water quality prediction. Int J Phys Sci 6:5298–5308. doi:10.5897/IJPS11.1180

    Google Scholar 

  28. Amiri BJ, Nakane K (2009) Comparative prediction of stream water total nitrogen from land cover using artificial neural network and multiple linear regression approaches. Pol J Environ Stud 18(2):151–160

    Google Scholar 

  29. Chebud Y, Naja GM, Rivero RG, Melesse AM (2012) Water quality monitoring using remote sensing and an artificial neural network. Water Air Soil Pollut 223:4875–4887. doi:10.1007/s11270-012-1243-0

    Article  Google Scholar 

  30. Lee JHW, Huang Y, Dickman M, Jayawardena AW (2003) Neural network modelling of coastal algal blooms. Ecol Model 159:179–201. doi:10.1016/s0304-3800(02)00281-8

    Article  Google Scholar 

  31. Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Mar Pollut Bull 56:1586–1597. doi:10.1016/j.marpolbul.2008.05.021

    Article  Google Scholar 

  32. Palani S, Liong S, Tkalich P, Palanichamy J (2009) Development of a neural network model for dissolved oxygen in seawater. Indian J Geo-Mar Sci 38:151–159

    Google Scholar 

  33. Muttil N, Chau K-W (2006) Neural network and genetic programming for modelling coastal algal blooms. Int J Environ Pollut 28:223–238. doi:10.1504/IJEP.2006.011208

    Article  Google Scholar 

  34. Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73. doi:10.1016/S0304-3800(99)00092-7

    Article  Google Scholar 

  35. Zou R, Lung W-S, Guo H (2002) Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. J Comput Civ Eng 16:135–142. doi:10.1061/(ASCE)0887-3801(2002)16:2(135)

    Article  Google Scholar 

  36. Kralisch S, Fink M, Flügel W-A, Beckstein C (2003) A neural network approach for the optimisation of watershed management. Environ Model Softw 18:815–823. doi:10.1016/S1364-8152(03)00081-1

    Article  Google Scholar 

  37. Maier HR, Morgan N, Chow CWK (2004) Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ Model Softw 19:485–494. doi:10.1016/S1364-8152(03)00163-4

    Article  Google Scholar 

  38. Diamantopoulou MJ, Papamichail DM, Antonopoulos VZ (2005) The use of a neural network technique for the prediction of water quality parameters. Oper Res 5:115–125. doi:10.1007/BF02944165

    Google Scholar 

  39. Elhatip H, Kömür MA (2008) Evaluation of water quality parameters for the Mamasin Dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environ Geol 53:1157–1164. doi:10.1007/s00254-007-0705-y

    Article  Google Scholar 

  40. Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220:888–895. doi:10.1016/j.ecolmodel.2009.01.004

    Article  Google Scholar 

  41. Dong Y, Scholz M, Harrington R (2012) statistical modeling of contaminants removal in mature integrated constructed wetland sediments. J Environ Eng 138:1009–1017. doi:10.1061/(ASCE)EE.1943-7870.0000572

    Article  Google Scholar 

  42. Wang L, Li X, Cui W (2012) Fuzzy neural networks enhanced evaluation of wetland surface water quality. Int J Comput Appl Technol 44:235. doi:10.1504/IJCAT.2012.049087

    Article  Google Scholar 

  43. Niroobakhsh M (2012) Prediction of water quality parameter in Jajrood River basin: application of multi layer perceptron (MLP) perceptron and radial basis function networks of artificial neural networks (ANNs). Afr J Agric Res 7:4131–4139. doi:10.5897/AJAR11.1645

    Article  Google Scholar 

  44. Department of Environment (2005) Malaysia environmental quality report. Petaling Jaya, Malaysia, 2007

  45. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124. doi:10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  46. Brown M, Harris CJ (1995) A perspective and critique of adaptive neurofuzzy systems used for modelling and control applications. Int J Neural Syst 6:197–220

    Article  Google Scholar 

  47. Lin G-F, Chen L-H (2004) A non-linear rainfall-runoff model using radial basis function network. J Hydrol 289:1–8. doi:10.1016/j.jhydrol.2003.10.015

    Article  Google Scholar 

  48. Ma L, Xin K, Liu S (2008) Using radial basis function neural networks to calibrate water quality model. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 2(2):9–17

  49. Beckert A, Wendland H (2001) Multivariate interpolation for fluid–structure-interaction problems using radial basis functions. Aerosp Sci Technol 5:125–134. doi:10.1016/S1270-9638(00)01087-7

    Article  MATH  Google Scholar 

  50. Lowe D, Broomhead D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  51. Bishop CM (1995) Neural networks for pattern recognition. J Am Stat Assoc. doi:10.2307/2965437

    MATH  Google Scholar 

  52. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  53. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, Englewood Clifs, NJ

  54. El-shafie A, Mukhlisin M, Najah AA, Taha MR (2011) Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int J Phys Sci 6:1997–2003. doi:10.5897/IJPS11.314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, M., Sharqi, S.S., Yaseen, Z.M. et al. Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia. Neural Comput & Applic 28 (Suppl 1), 893–905 (2017). https://doi.org/10.1007/s00521-016-2404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2404-7

Keywords

Navigation