Skip to main content

Advertisement

Log in

A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Maximum power point tracking (MPPT) algorithms are used to maximize the output power of the photovoltaic (PV) panel under different temperature and irradiance conditions in photovoltaic energy sources (PVES). In this paper, a novel MPPT method based on optimized artificial neural network by using hybrid particle swarm optimization and gravitational search algorithm based on fuzzy logic (FPSOGSA) is proposed to track the operation of the PV panel in maximum power point (MPP). The performance of the proposed MPPT approach is tested by doing the simulation and experimental studies under different environmental conditions. The proposed method is compared with the conventional perturb and observation (P&O) method for standalone PVES. The results of the comparison the obtained from the simulation and experimental studies demonstrate that the proposed MPPT method provides the reduction oscillations around the MPP and the increased maximum power yield of the PV system in the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Chen LR, Tsai CH, Lin YL, Lai YS (2010) A biological swarm chasing algorithm for tracking the PV maximum power point. IEEE Trans Energy Convers 25(2):484–493

    Article  Google Scholar 

  2. Uoya M, Koizumi H (2015) A calculation method of photovoltaic array’s operating point for MPPT evaluation based on one-dimensional Newton–Raphson method. IEEE Trans Ind Appl 51(1):567–575

    Article  Google Scholar 

  3. Liu Y, Li M, Ji X, Luo X, Wang M, Zhang Y (2014) A comparative study of the maximum power point tracking methods for PV systems. Energy Convers Manag 85:809–816

    Article  Google Scholar 

  4. Femia N, Petrone G, Spagnuolo G, Vitelli M (2005) Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 20(4):963–973

    Article  Google Scholar 

  5. Pandey A, Dasgupta N, Mukerjee AK (2008) High-performance algorithms for drift avoidance and fast tracking in solar MPPT system. IEEE Trans Energy Convers 23(2):681–689

    Article  Google Scholar 

  6. Femia N, Petrone G, Spagnuolo G, Vitelli M (2004) Increasing the efficiency of P&O MPPT by converter dynamic matching. In: 2004 IEEE international symposium on industrial electronics, pp 1017–1021

  7. Hsiao YT, Chen CH (2002) Maximum power tracking for photovoltaic power system. In: 37th IAS annual meeting conference record of the industry applications conference, pp 1035–1040

  8. Hussein KH, Muta I, Hoshino T, Osakada M (1995) Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proc Gener Transm Distrib 142(1):59–64

    Article  Google Scholar 

  9. Jain S, Agarwal V (2007) Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electr Power Appl 1(5):753–762

    Article  Google Scholar 

  10. Kuo YC, Liang TJ, Chen JF (2001) Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans Ind Electron 48(3):594–601

    Article  Google Scholar 

  11. Li J, Wang H (2009) A novel stand-alone PV generation system based on variable step size INC MPPT and SVPWM control. In: IEEE 6th international power electronics and motion control conference, pp 2155–2160

  12. Koutroulis E, Kalaitzakis K, Voulgaris NC (2001) Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans Power Electron 16(1):46–54

    Article  Google Scholar 

  13. Jain S, Agarwal V (2007) A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking. IEEE Trans Power Electron 22(5):1928–1940

    Article  Google Scholar 

  14. Gules R, Pacheco JDP, Hey HL, Imhoff J (2008) A maximum power point tracking system with parallel connection for PV stand-alone applications. IEEE Trans Ind Electron 55(7):2674–2683

    Article  Google Scholar 

  15. Masoum MAS, Dehbonei H, Fuchs EF (2002) Theoretical and experimental analyses of photovoltaic systems with voltage and current based maximum power point tracking. IEEE Trans Energy Convers 17(4):514–522

    Article  Google Scholar 

  16. Bhatnagar P, Nema RK (2013) Maximum power point tracking control technique: start-of-the-art in photovoltaic applications. Renew Sustain Energy Rev 23:224–241

    Article  Google Scholar 

  17. Al Nabulsi A, Dhaouadi R (2012) Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Ind Inform 8(3):573–584

    Article  Google Scholar 

  18. Altas IH, Sharaf AM (2008) A novel maximum power fuzzy logic controller for photovoltaic solar energy systems. Renew Energy 33:388–399

    Article  Google Scholar 

  19. Altas IH, Sharaf AM (1992) A fuzzy logic power tracking controller for a photovoltaic energy conversion scheme. Electr Power Syst Res 25(3):227–238

    Article  Google Scholar 

  20. Hiyama T, Kouzuma S, Imakubo T (1995) Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans Energy Convers 10(2):360–367

    Article  Google Scholar 

  21. Hussein A, Hırasawa K, Hu J, Murata J (2002) The dynamic performance of photovoltaic supplied DC motor fed from DC–DC converter and controlled by neural networks. In: Proceedings of the 2002 international joint conference on neural networks, pp 607–612

  22. Karatepe E, Hiyama T (2009) Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew Power Gener 3(2):239–253

    Article  Google Scholar 

  23. Veerachary M, Senjyu T, Uezato K (2003) Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans Ind Electron 50(4):749–758

    Article  Google Scholar 

  24. Ishaque K, Salam Z (2013) A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans Ind Electron 60(8):3195–3206

    Google Scholar 

  25. Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Appl Energy 119:118–130

    Article  Google Scholar 

  26. Lian KL, Jhang JH, Tian IS (2014) A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE J Photovolt 4(2):626–633

    Article  Google Scholar 

  27. Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236

    Article  Google Scholar 

  28. D’Souza NS, Lopes LAC, Liu X (2010) Comparative study of variable size perturbation and observation maximum power point trackers for PV systems. Electr Power Syst Res 80:296–305

    Article  Google Scholar 

  29. Kulaksız AA, Akkaya R (2012) A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol Energy 86:2366–2375

    Article  Google Scholar 

  30. Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62:330–340

    Article  Google Scholar 

  31. Jiang LL, Nayanasiri DR, Maskell DL, Vilathgamuwa DM (2015) A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics. Renew Energy 76:53–65

    Article  Google Scholar 

  32. Rizzo SA, Scelba G (2015) ANN based MPPT method for rapidly variable shading conditions. Appl Energy 145:124–132

    Article  Google Scholar 

  33. Kulaksız AA, Akkaya R (2012) Training data optimization for ANNs using genetic algorithms to enhance MPPT efficiency of a stand-alone PV system. Turk J Electr Eng Comput Sci 20(2):241–254

    Google Scholar 

  34. Ustun O (2009) Genetik Algoritma Kullanarak İleri Beslemeli Bir Sinir Ağında Etkinlik Fonksiyonlarının Belirlenmesi. Pamukkale Universitesi Muhendislik Bilimleri Dergisi 15(3):395–403

    Google Scholar 

  35. Ustun O, Yıldız I (2009) Geri Yayılmalı Öğrenme Algoritmasındaki Öğrenme Parametrelerinin Genetik Algoritma İle Belirlenmesi. Suleyman Demirel Universitesi Uluslararası Teknolojik Bilimler Dergisi 1(2):61–73

    Google Scholar 

  36. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209

    Article  MathSciNet  Google Scholar 

  37. Mirjalili S, Hashim SZM, Sardroudi HM (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137

    MathSciNet  MATH  Google Scholar 

  38. Mirjalili S (2015) How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

    Article  Google Scholar 

  39. Mirjalili SZ, Saremi S, Mirjalili SM (2015) Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Comput Appl. doi:10.1007/s00521-015-1847-6

    Google Scholar 

  40. Zhang F, Thanapalan K, Procter A, Carr S, Maddy J (2013) Adaptive hybrid maximum power point tracking method for a photovoltaic system. IEEE Trans Energy Convers 28(2):353–360

    Article  Google Scholar 

  41. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  42. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: International conference on computer and information application (ICCIA 2010), pp 374–377

  43. Radosavljevic J, Klimenta D, Jevtic M, Nebojsa A (2015) Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm. Electr power Compon Syst 43(17):1958–1970

    Article  Google Scholar 

  44. Mangaiyarkarasi SP, Raja TSR (2014) Optimal location and sizing of multiple static VAr compensators for voltage risk assessment using hybrid PSO–GSA algorithm. Arab J Sci Eng 39(11):7967–7980

    Article  Google Scholar 

  45. Sun B, Liu C, Liu Y, Wu X, Li Y, Wang X (2015) Conformal array pattern synthesis and activated elements selection strategy based on PSOGSA algorithm. Int J Antennas Propag. doi:10.1155/2015/858357

    Google Scholar 

  46. Duman S, Yorukeren N, Altas IH (2015) A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Int J Electr Power Energy Syst 64:121–135

    Article  Google Scholar 

  47. Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell 25(8):1589–1597

    Article  Google Scholar 

  48. Wai RJ, Lin FJ (1999) Fuzzy neural network sliding-mode position controller for induction servo motor drive. IEE Proc Electr Power Appl 146(3):297–308

    Article  Google Scholar 

  49. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25:1569–1584

    Article  Google Scholar 

  50. Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25:663–681

    Article  Google Scholar 

  51. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimization with chaos. Neural Comput Appl 25:1077–1097

    Article  Google Scholar 

  52. Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. doi:10.1007/s00521-015-1870-7

    Google Scholar 

Download references

Acknowledgments

This study was supported by Kocaeli University Scientific Research Projects Unit. Project No: 2012/067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Duman.

Appendix

Appendix

See Table 8.

Table 8 The parameters of the FPSOGSA algorithm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, S., Yorukeren, N. & Altas, I.H. A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems. Neural Comput & Applic 29, 257–278 (2018). https://doi.org/10.1007/s00521-016-2447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2447-9

Keywords

Navigation