Skip to main content
Log in

Geographical classification of Spanish bottled mineral waters by means of iterative models based on linear discriminant analysis and artificial neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The composition of Spanish natural mineral waters has been determined by means of inductively coupled plasma-mass spectrometry, inductively coupled plasma-atomic emission spectrometry, ionic chromatography and other routine techniques. Methods were applied to samples of bottled water from springs situated in five different mountain systems such as Cordillera Costero-Catalana, Macizo Galaico, Sistemas Béticos, Sistema Central and Sistema Ibérico. Pattern recognition techniques have been applied to differentiate the origin of samples. Data were initially studied by using nonparametric multiple comparison techniques and principal component analysis to highlight data trends. Classification models based on linear discriminant analysis and multilayer perceptron artificial neural networks have been built and validated by means of a stratified jackknifing methodology. An iterative approach has been used to build an artificial neural network model based on the variables selected by linear discriminant analysis. The prediction ability of the constructed model was 94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. European Union (2009) Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the exploitation and marketing of natural mineral waters. Official Journal of the European Union, L 164/45, Brussels. http://eur-lex.europa.eu/eli/dir/2009/54/oj. Accessed 9 July 2016

  2. Sipos L, Kovács Z, Sági-Kiss V, Csiki T, Kókai Z, Fekete A, Éberger K (2012) Discrimination of mineral waters by electronic tongue, sensory evaluation and chemical analysis. Food Chem 135:2947–2953. doi:10.1016/j.foodchem.2012.06.021

    Article  Google Scholar 

  3. Oyebog SA, Ako AA, Nkeng GE, Suh EC (2012) Hydrogeochemical characteristics of some Cameroon bottled waters, investigated by multivariate statistical analyses. J Geochem Explor 112:118–130. doi:10.1016/j.gexplo.2011.08.003

    Article  Google Scholar 

  4. Peh Z, Ŝorŝa A, Halamić J (2010) Composition and variation of major and trace elements in Croatian bottled waters. J Geochem Explor 107:227–237. doi:10.1016/j.gexplo.2010.02.002

    Article  Google Scholar 

  5. Fugedi U, Kuti L, Jordan G, Kerek B (2010) Investigation on the hydrogeochemistry of some bottled mineral waters in Hungary. J Geochem Explor 107:305–316. doi:10.1016/j.gexplo.2010.10.011

    Article  Google Scholar 

  6. Naddeo V, Zarra T, Belgiorno V (2008) A comparative approach to the variation of natural elements in Italian bottled waters according to the national and international standard limits. J Food Comp Anal 21:505–514. doi:10.1016/j.jfca.2008.02.010

    Article  Google Scholar 

  7. Birke M, Rauch U, Harazim B, Lorenz H, Glatte W (2010) Major and trace elements in German bottled water, their regional distribution and accordance with national and international standards. J Geochem Explor 107:245–271. doi:10.1016/j.gexplo.2010.06.002

    Article  Google Scholar 

  8. Güler C (2007) Characterization of Turkish bottled waters using pattern recognition methods. Chemom Intell Lab Syst 86:86–94. doi:10.1016/j.chemolab.2006.08.009

    Article  Google Scholar 

  9. Gutiérrez-Reguera F, Seijo-Delgado I, Montoya-Mayor R, Ternero-Rodríguez M (2012) Caracterización fisicoquímica (parámetros generales y componentes mayoritarios) de las aguas minerales naturales envasadas de España. Afinidad 519:165–174

    Google Scholar 

  10. Smedley PL (2010) A survey of the inorganic chemistry of bottled mineral waters from the British Isles. Appl Geochem 25:1872–1888. doi:10.1016/j.apgeochem.2010.10.003

    Article  Google Scholar 

  11. Souza AL, Lemos SG, Naozuka J, Miranda-Correia PR, Oliveira PV (2011) Exploring the emission intensities of ICPOES aided by chemometrics in the geographical discrimination of mineral waters. J Anal At Spectrom 26:852–860. doi:10.1039/C0JA00071J

    Article  Google Scholar 

  12. Groŝelj N, van der Veer G, Tuŝar M, Vračko M, Novič M (2010) Verification of the geological origin of bottled mineral waters using artificial neural networks. Food Chem 118:941–947. doi:10.1016/j.foodchem.2008.11.085

    Article  Google Scholar 

  13. Thermo Electron Corporation (2004) X series ICP-MS getting started guide. Ref. no. S419MA. Thermo Electron Corporation, Winsford

  14. AOAC (2012) Appendix F: guidelines for standard method performance requirements. In: Official methods of analysis of AOAC international, 19th edn. AOAC International, Gaithersburg

  15. Cuadros L, García AM, Bosque JM (1996) Statistical estimation of linear calibration range. Anal Lett 29:1231–1239. doi:10.1080/00032719608001471

    Article  Google Scholar 

  16. ISO (1994) ISO 9963-1:1994 Water quality. Determination of alkalinity. Part 1: determination of total and composite alkalinity. International Organization for Standardization, Geneva

  17. ISO (1985) ISO 7888:1985 Water quality. Determination of electrical conductivity. International Organization for Standardization, Geneva

  18. Muth JE (1999) Basic statistic and pharmaceutical statistical applications, 1st edn. Chapman and Hall/CRC, New York

    Google Scholar 

  19. Jolliffe IT (2002) Principal components analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  20. Palacios-Morillo A, Alcázar A, Pablos F, Jurado JM (2013) Differentiation of tea varieties using UV–Vis spectra and pattern recognition techniques. Spectrochim Acta A 103:79–83. doi:10.1016/j.saa.2012.10.052

    Article  Google Scholar 

  21. Tsakovski S, Simeonov V (2009) Chemometrics as a tool for treatment processing of multiparametric analytical data sets. In: Namiesnik J, Szefer P (eds) Analytical measurements in aquatic environments. CRC Press, Boca Raton, pp 369–388

    Chapter  Google Scholar 

  22. Valle S, Li W, Qin SJ (1999) Selection of the number of principal components: the variance of reconstruction error criterion with comparison to other methods. Ind Eng Chem Res 38:4389–4401. doi:10.1021/ie990110i

    Article  Google Scholar 

  23. Massart DL (1998) Handbook of chemometrics and qualimetrics, part B. Elsevier, Amsterdam

    Google Scholar 

  24. Forina M, Armanino C, Leardi R, Drava G (1991) A class modelling technique based on potential functions. J Chemom 5:435–453. doi:10.1002/cem.1180050504

    Article  Google Scholar 

  25. Kott PS (2001) The delete-a-group jackknife. J Off Stat 17:521–526

    Google Scholar 

  26. Tetko IV, Livingstone DJ, Luik AI (1995) Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inform Comput Sci 35:826–833. doi:10.1021/ci00027a006

    Article  Google Scholar 

  27. Martin AE, Watling RJ, Lee GS (2012) The multi-element determination and regional discrimination of Australian wines. Food Chem 133:1081–1089. doi:10.1016/j.foodchem.2012.02.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marcos Jurado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Reguera, F., Jurado, J., Montoya-Mayor, R. et al. Geographical classification of Spanish bottled mineral waters by means of iterative models based on linear discriminant analysis and artificial neural networks. Neural Comput & Applic 29, 459–468 (2018). https://doi.org/10.1007/s00521-016-2459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2459-5

Keywords

Navigation