Skip to main content
Log in

Comparative study of artificial neural network for classification of hot and cold recombination regions in Saccharomyces cerevisiae

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

At the chromosomal level of evolution, recombination is a major factor for genetic variations. However, recombination does not occur with equal frequency at various regions of genome. The recombination has the tendency to occur at specific region with higher frequency and with low frequency at other regions, and former regions are named as hot recombination regions whereas later are called cold regions for recombination. In this paper, we have developed supervised machine learning-based models using artificial neural network, support vector machine and Naïve Bayes for efficient and effective classification of such hot and cold recombination regions based on the nucleotide composition of sequences. All models were validated and tested using tenfold cross-validation. Furthermore, neural network model was validated using leave one out and random sampling techniques in addition to tenfold cross-validation. Moreover, models were evaluated using receiver-operating curve. Our results indicate that artificial neural network achieves the best result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansen L, Kim N-K, Mariño-Ramírez L, Landsman D (2011) Analysis of biological features associated with meiotic recombination hot and cold spots in Saccharomyces cerevisiae. PLoS ONE 6(12):e29711

    Article  Google Scholar 

  2. Smith GR (2001) Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet 35(1):243–274

    Article  Google Scholar 

  3. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5(6):413–424

    Article  Google Scholar 

  4. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310(5746):321–324

    Article  Google Scholar 

  5. Baudat F, Nicolas A (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci 94(10):5213–5218

    Article  Google Scholar 

  6. Klein S, Zenvirth D, Dror V, Barton AB, Kaback DB, Simchen G (1996) Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105(5):276–284

    Article  Google Scholar 

  7. Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J 11(9):3441

    Google Scholar 

  8. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2(5):360–369

    Article  Google Scholar 

  9. Kohl KP, Sekelsky J (2013) Meiotic and mitotic recombination in meiosis. Genetics 194(2):327–334

    Article  Google Scholar 

  10. Lichten M, Goldman AS (1995) Meiotic recombination hotspots. Annu Rev Genet 29(1):423–444

    Article  Google Scholar 

  11. Jeffreys AJ, Holloway JK, Kauppi L, May CA, Neumann R, Slingsby MT, Webb AJ (2004) Meiotic recombination hot spots and human DNA diversity. Philos Trans R Soc Lond B Biol Sci 359(1441):141–152

    Article  Google Scholar 

  12. Wahls WP (1997) 2 Meiotic recombination hotspots: shaping the genome and Insights into hypervariable minisatellite DNA change. Curr Top Dev Biol 37:37–75

    Article  Google Scholar 

  13. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 97(21):11383–11390

    Article  Google Scholar 

  14. Kliman RM, Irving N, Santiago M (2003) Selection conflicts, gene expression, and codon usage trends in yeast. J Mol Evol 57(1):98–109

    Article  Google Scholar 

  15. Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10(6):1239–1258

    Google Scholar 

  16. Marais G, Mouchiroud D, Duret L (2001) Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci 98(10):5688–5692

    Article  Google Scholar 

  17. Marais G, Piganeau G (2002) Hill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genomes. Mol Biol Evol 19(9):1399–1406

    Article  Google Scholar 

  18. Perry J, Ashworth A (1999) Evolutionary rate of a gene affected by chromosomal position. Curr Biol 9(17):987–989

    Article  Google Scholar 

  19. Fullerton SM, Carvalho AB, Clark AG (2001) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18(6):1139–1142

    Article  Google Scholar 

  20. Friedel CC, Jahn KH, Sommer S, Rudd S, Mewes HW, Tetko IV (2005) Support vector machines for separation of mixed plant–pathogen EST collections based on codon usage. Bioinformatics 21(8):1383–1388

    Article  Google Scholar 

  21. Bren U, Guengerich FP, Mavri J (2007) Guanine alkylation by the potent carcinogen aflatoxin B1: quantum chemical calculations. Chem Res Toxicol 20(8):1134–1140

    Article  Google Scholar 

  22. Brown KL, Bren U, Stone MP, Guengerich FP (2009) Inherent stereospecificity in the reaction of aflatoxin B1 8, 9-epoxide with deoxyguanosine and efficiency of DNA catalysis. Chem Res Toxicol 22(5):913–917

    Article  Google Scholar 

  23. Bren U, Fuchs JE, Oostenbrink C (2014) Cooperative binding of aflatoxin B1 by cytochrome P450 3A4: a computational study. Chem Res Toxicol 27(12):2136–2147

    Article  Google Scholar 

  24. Biro JC (2008) Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases. Theor Biol Med Model 5(1):14

    Article  Google Scholar 

  25. Bibb M, Findlay P, Johnson M (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30(1):157–166

    Article  Google Scholar 

  26. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  Google Scholar 

  27. Lin K, Kuang Y, Joseph JS, Kolatkar PR (2002) Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res 30(11):2599–2607

    Article  Google Scholar 

  28. Liu G, Liu J, Cui X, Cai L (2012) Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae. J Theor Biol 293:49–54

    Article  MathSciNet  MATH  Google Scholar 

  29. Qiu W-R, Xiao X, Chou K-C (2014) iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int J Mol Sci 15(2):1746–1766

    Article  Google Scholar 

  30. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92(4):371–373

    Article  Google Scholar 

  31. Carver T, Bleasby A (2003) The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19(14):1837–1843

    Article  Google Scholar 

  32. Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 2. Wiley, New York

    MATH  Google Scholar 

  33. Vapnik V (2000) The nature of statistical learning theory. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  35. Baxt WG, Shofer FS, Sites FD, Hollander JE (2002) A neural computational aid to the diagnosis of acute myocardial infarction. Ann Emerg Med 39(4):366–373

    Article  Google Scholar 

  36. García-Pedrajas N, Hervás-Martínez C, Ortiz-Boyer D (2005) Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evolut Comput 9(3):271–302

    Article  Google Scholar 

  37. Yao X, Liu Y (1998) Making use of population information in evolutionary artificial neural networks. IEEE Trans Syst Man Cybern Part B Cybern 28(3):417–425

    Google Scholar 

  38. Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14(1):2349–2353

    MATH  Google Scholar 

  39. Demšar J, Zupan B, Leban G, Curk T (2004) Orange: from experimental machine learning to interactive data mining. Springer, Berlin

    Google Scholar 

  40. Shafer G, Pearl J (1990) Readings in uncertain reasoning. Morgan Kaufmann Publishers Inc., California

    MATH  Google Scholar 

  41. Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3):197–243

    MATH  Google Scholar 

  42. Jensen FV (1996) An introduction to Bayesian networks, vol 210. UCL press, London

    Google Scholar 

  43. Peral J (1988) Probabilistic reasoning in intelligent systems, vol 12. Morgan Kaufmann, California, pp 241–288

    Google Scholar 

  44. Castillo E (1997) Expert systems and probabilistic network models. Springer, Berlin

    Book  Google Scholar 

  45. Metz CE (1978) Basic principles of ROC analysis. In: Seminars in nuclear medicine, vol 4. Elsevier, pp 283–298

  46. Kanmani S, Uthariaraj VR, Sankaranarayanan V, Thambidurai P (2007) Object-oriented software fault prediction using neural networks. Inf Softw Technol 49(5):483–492

    Article  Google Scholar 

  47. Briand LC, Wüst J (2002) Empirical studies of quality models in object-oriented systems. Adv Comput 56:97–166

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to Department of Biotechnology, New Delhi for providing support for this work under Bioinformatics Infrastructure Facility of DBT at MANIT Bhopal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.K., Chouhan, U. Comparative study of artificial neural network for classification of hot and cold recombination regions in Saccharomyces cerevisiae . Neural Comput & Applic 29, 529–535 (2018). https://doi.org/10.1007/s00521-016-2466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2466-6

Keywords

Navigation