Skip to main content
Log in

Simulation of novel hybrid method to improve dynamic responses with PSS and UPFC by fuzzy logic controller

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a hybrid method is proposed to damp frequency and power oscillations in the power system equipped with unified power flow controller (UPFC) and power system stabilizer (PSS) controllers. The method is robust with respect to operating point’s changes. This hybrid method consists of two stages: offline and online. In the offline stage, the coefficients of PSS and UPFC controllers for different operating points have been found by PSO algorithm; then in the second stage, online new fuzzy controller is proposed to select the best PSS and UPFC coefficients according to operating point. The proposed method is simulated for single machine infinite bus system-associated PSS and UPFC for three different operating points in MATLAB software, and results of proposed method simulation are investigated and compared with conventional PSS (CPSS) + UPFC, CPSS controllers. Simulation results show that the proposed method has a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kundur P (1994) Power system stability and control. EPRI power system engineering series. Mc Graw-Hill, New York

    Google Scholar 

  2. Anderson PM, Fouad AA (1994) Power system control and stability. IEEE Press, New York

    Google Scholar 

  3. Abd-Elazim SM, Ali ES (2013) A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design. Int J Electr Power Energy Syst 46(1):334–341

    Article  Google Scholar 

  4. Mostafa HE (2012) Design and allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system. Int J Electr Power Energy Syst 34(1):57–65

    Article  MathSciNet  Google Scholar 

  5. Eslami M, Shareef H, Azah M, Khajehzadeh M (2012) An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems. Int J Electr Power Energy Syst 43:1467–1478

    Article  Google Scholar 

  6. Safari A (2013) A PSO procedure for a coordinated tuning of power system stabilizers for multiple operating conditions. Int J Electr Power Energy Syst 11:665–673

    Google Scholar 

  7. Ragavendiran A, Gnanadass R, Ramakrishnan K (2015) A new SPARLS algorithm for tuning power system stabilizer. Int J Electr Power Energy Syst 68:327–335

    Article  Google Scholar 

  8. Tayal VK, Lather JS (2015) Reduced order H∞ TCSC controller & PSO optimized fuzzy PSS design in mitigating small signal oscillations in a wide range. Int J Electr Power Energy Syst 68:123–131

    Article  Google Scholar 

  9. Peres W, de Oliveira EJ, Passos Filho JA, da Silva Junior IC (2015) Coordinated tuning of power system stabilizers using bio-inspired algorithms. Int J Electr Power Energy Syst 64:419–428

    Article  Google Scholar 

  10. Ellithy K, Said S, Kahlout O (2014) Design of power system stabilizers based on μ-controller for power system stability enhancement. Int J Electr Power Energy Syst 63:933–939

    Article  Google Scholar 

  11. Soliman M, Elshafei AL, Bendary F, Mansour W (2010) Robust decentralized PID based power system stabilizer design using an ILMI approach. Electr Power Syst Res 80:1488–1497

    Article  Google Scholar 

  12. Ramakrishna G, Malik OP (2010) Adaptive PSS using a simple on-line identifier and linear pole-shift controller. Electr Power Syst Res 80:406–416

    Article  Google Scholar 

  13. Sambariya DK, Prasad R (2014) Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int J Electr Power Energy Syst 61:229–238

    Article  Google Scholar 

  14. Soliman M (2015) Robust non-fragile power system stabilizer. Int J Electr Power Energy Syst 2015(64):626–634

    Article  Google Scholar 

  15. Bhati PS, Gupta R (2013) Robust fuzzy logic power system stabilizer based on evolution and learning. Int J Electr Power Energy Syst 53:357–366

    Article  Google Scholar 

  16. Alkhatib H, Duveau J (2013) Dynamic genetic algorithms for robust design of multimachine power system stabilizers. Int J Electr Power Energy Syst 45:242–251

    Article  Google Scholar 

  17. Nechadi E, Harmas MN, Hamzaoui A, Essounbouli N (2012) A new robust adaptive fuzzy sliding mode power system stabilizer. Int J Electr Power Energy Syst 42:1–7

    Article  Google Scholar 

  18. de Campos VAF, da Cruz JJ, Zanetta LC Jr (2012) Robust and optimal adjustment of power system stabilizers through linear matrix inequalities. Int J Electr Power Energy Syst 42:478–486

    Article  Google Scholar 

  19. Khodabakhshian A, Hemmati R (2012) Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory. Int J Electr Power Energy Syst 41:112–119

    Article  Google Scholar 

  20. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  21. Ying H (2000) Fuzzy control and modeling: analytical foundation and applications. IEEE Press, New York

    Book  Google Scholar 

  22. Sharma D (2011) Designing and modeling fuzzy control systems. Int J Comput Appl 16:1

    Google Scholar 

  23. Wang LX (1997) A course in fuzzy systems and control. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  24. Driankov D, Hellendoorn H, Reinfrank M (1993) An introduction to fuzzy control. Springer, New York

    Book  MATH  Google Scholar 

  25. Hingorani NG, Gyugyi L (2000) Understanding FACTS. IEEE Press, New York

    Google Scholar 

  26. Simfukwe DD, Pal BC, Jabr RA, Martins N (2012) Robust and low-order design of flexible ac transmission systems and power system stabilisers for oscillation damping. Inst Eng Technol 6:445–452

    Google Scholar 

  27. Eslami M, Shareef H, Mohd RT, Khajehzadeh M (2014) Adaptive particle swarm optimization for simultaneous design of UPFC damping controllers. Int J Electr Power Energy Syst 57:116–128

    Article  Google Scholar 

  28. Hashemi A, Tabatabaei NM, Taheri N, Naderi S (2012) A flexible neural controller for transmission systems equipped with UPFC. Int J Tech Phys Probl Eng (IJTPE) 4(3):167–176

    Google Scholar 

  29. Sedighizadeh M, Minooie B, Sarvi M (2013) Power system stability enhancement using a NSPSO designed UPFC damping controller. Int J Tech Phys Probl Eng 5(4):1–8

    Google Scholar 

  30. Hassan L, Moghavvemi M, Almurib HF (2012) Modeling UPFC into multi-machine power systems. Arabian J Sci Eng 37(6):1613–1624

    Article  Google Scholar 

  31. Shayeghi H, Safari A (2009) Simultaneous coordinated designing of UPFC and PSS output feedback controllers using PSO. J Electr Eng 60(4):177–184

    Google Scholar 

  32. Tambey N, Kothari ML (2003) Damping of power system oscillations with unified power flow controller. IEE Proc Gener Transm Distrib 150(2):129–140

    Article  Google Scholar 

  33. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Intl Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  34. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization an overview. Int J Swarm Intell 1:33–57

    Article  Google Scholar 

  35. Shivakumar R, Lakshmipathi R (2010) Power system stability enhancement using bio inspired genetic and PSO algorithm implementation. Int Rev Electr Eng (IREE) 5(4):1609–1615

    Google Scholar 

  36. Shaheen HI, Rashed GI, Cheng SJ (2010) Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC. Eng Appl Artif Intell 23(2):203–216

    Article  Google Scholar 

  37. Abido MA (2001) Particle swarm optimization for multimachine power system stabilizer design. IEEE Power Eng Soc Summer Meet 3:1346–1351

    Article  Google Scholar 

  38. Wang LX (1997) A course in fuzzy systems and control. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  39. Driankov D, Hellendoorn H, Reinfrank M (1993) An introduction to fuzzy control. Springer, New York

    Book  MATH  Google Scholar 

  40. Rezvani A, Gandomkar M (2016) Modeling and control of grid connected intelligent hybrid photovoltaic system using new hybrid fuzzy-neural method. Sol Energy 127:1–18

    Article  Google Scholar 

  41. Rezvani A, Khalili A, Mazareie A, Gandomkar M (2016) Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method. ISA Trans. doi:10.1016/j.isatra.2016.02.013

    Google Scholar 

  42. Rezvani A, Gandomkar M (2016) Simulation and control of intelligent photovoltaic system using new hybrid fuzzy-neural method. Neural Comput Appl. doi:10.1007/s00521-016-2210-2

    Google Scholar 

  43. Uyar O, Çunkaş M (2013) Fuzzy logic-based induction motor protection system. Neural Comput Appl 23(1):31–40

    Article  Google Scholar 

  44. Hamza MF, Yap HJ, Choudhury IA (2015) Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control. Neural Comput Appl. doi:10.1007/s00521-015-2111-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Khaksar.

Appendix

Appendix

See Table 15.

Table 15 Parameters of the test system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksar, M., Rezvani, A. & Moradi, M.H. Simulation of novel hybrid method to improve dynamic responses with PSS and UPFC by fuzzy logic controller. Neural Comput & Applic 29, 837–853 (2018). https://doi.org/10.1007/s00521-016-2487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2487-1

Keywords

Navigation