Skip to main content

Advertisement

Log in

Quasi-reflected ions motion optimization algorithm for short-term hydrothermal scheduling

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper describes quasi-reflected ions motion optimization algorithm to solve the short-term hydrothermal scheduling problem. The aim of hydrothermal scheduling is to minimize the total cost of generation by optimizing power generation of several hydro and thermal units on an hourly basis. The algorithm mainly works on the principle that opposite charges attract each other and same charges repel each other. Two phases are employed in this algorithm, namely liquid phase and crystal phase, in order to perform exploration and exploitation. Furthermore, quasi-reflected-based learning scheme is incorporated to ions motion optimization algorithm, in order to increase the convergence speed as well as the quality of the solution. To investigate the performance of the ions motion optimization algorithm, the algorithm has been tested on seven test systems. The results obtained by the ions motion optimization algorithm have been compared with those obtained by many recently developed optimization techniques such as evolutionary programming, genetic algorithm, particle swarm optimization, differential evolution, artificial immune system, teaching–learning-based optimization, real-coded chemical-reaction-based optimization, cuckoo search algorithm and modified cuckoo search algorithm. Moreover, some statistical tests have been performed to evaluate the performance of ions motion optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Engles L, Larson RE, Peschon J, Stanton KN (1976) Dynamic programming applied to hydro and thermal generation scheduling. In: IEEE tutorial course text, 76CH1107-2-PWR, IEEE, New York

  2. Saha TN, Khaparde SA (1978) An application of a direct method to the optimal scheduling of hydrothermal systems. IEEE Trans PAS 97(3):977–983. doi:10.1109/TPAS.1978.354571

    Article  Google Scholar 

  3. Wood AJ, Wollenberg BF (1984) Power generation, operation and control. Wiley, New York

    Google Scholar 

  4. Brannud H, Bubenko JA, Sjelvgren D (1986) Optimal short term operation planning of a large hydrothermal power system based on a nonlinear network flow concept. IEEE Trans PWRS 1(4):75–82. doi:10.1109/TPWRS.1986.4335019

    Google Scholar 

  5. Xia Q, Xiang N, Wang S, Zhang B, Huang M (1988) Optimal daily scheduling of cascaded plants using a new algorithm of non-linear minimum cost network flow concept. IEEE Trans PWRS 3(3):929–935. doi:10.1109/59.14543

    Google Scholar 

  6. Piekutowski MR, Litwinowicz T, Frowd RJ (1993) Optimal short term scheduling for a large scale cascaded hydro system. In: Power industry computer applications conference, Phoenix, pp 292–298. doi:10.1109/59.317636

  7. Zaghlool MF, Trutt FC (1988). Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Trans Power Syst 3(1). doi:10.1109/59.43176

  8. Salam Nor KM, Hamdan AR (1998) Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Trans Power Syst 13(1):226–235. doi:10.1109/59.651640

    Article  Google Scholar 

  9. Rashid AHA, Nor KM (1991) An efficient method for optimal scheduling of fixed head hydro and thermal plants. IEEE Trans Power Syst 6(2):632–636. doi:10.1109/59.76706

  10. Nilsson O, Sjelvgren D (1996) Mixed-integer programming applied to short-term planning of a hydrothermal system. IEEE Trans Power Syst 11(1):281–286. doi:10.1109/59.486107

    Article  Google Scholar 

  11. Wong KP, Wong YW (1994) Short-term hydrothermal scheduling Part I: simulated annealing approach. Proc Inst Electr Eng Gen Transm Distrib 141(5):497–501. doi:10.1049/ip-gtd:19941350

    Article  Google Scholar 

  12. Wong KP, Wong YW (1994) Short-term hydrothermal scheduling Part II: parallel simulated annealing approach. Proc Inst Electr Eng Gen Transm Distrib 141(5):502–506. doi:10.1049/ip-gtd:19941351

    Article  Google Scholar 

  13. Chan PH, Chang HC (1996) Genetic aided scheduling of hydraulically coupled plants in hydrothermal coordination. IEEE Trans Power Syst 11(2):975–981. doi:10.1109/59.496183

    Article  Google Scholar 

  14. Orero SO, Irving MR (1998) A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Trans PWRS 13(2):501–518. doi:10.1109/TPWRS.2002.807053

    Google Scholar 

  15. Gil E, Bustos J, Rudnick H (2003) Short-term hydrothermal generation scheduling model using a genetic algorithm. IEEE Trans PWRS 18(4):1256–1264. doi:10.1109/TPWRS.2003.819877

  16. Zoumas CE, Bakirtzis AG, Theocharis JB, Petridis V (2004) A genetic algorithm solution approach to the hydrothermal coordination problem. IEEE Trans Power Syst 19(3):1356–1364. doi:10.1109/TPWRS.2004.825896

    Article  Google Scholar 

  17. Hota PK, Chakrabarti R, Chattopadhyay PK (1999) Short-term hydrothermal scheduling through evolutionary programming technique. Electr Power Syst Res 52:189–196. doi:10.1016/S0378-7796(99)00021-8

    Article  Google Scholar 

  18. Sinha N, Chakrabarti R, Chattopadhaya PK (2003) Fast evolutionary programming techniques for short-term hydrothermal scheduling. Electric Power Syst Res 66:97–103. doi:10.1109/TPWRS.2002.807053

    Article  Google Scholar 

  19. Türkay B, Mecitoğlu F, Baran S (2011) Application of a fast evolutionary algorithm to short-term hydrothermal generation scheduling. Energy Sourc Part B Econ Plan Policy 395–405. doi:10.1080/15567249.2010.489098

  20. Basu M (2003) Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems. Electr Power Syst Res 64(1):11–15. doi:10.1016/S0378-7796(02)00118-9

    Article  Google Scholar 

  21. Mandal KK, Chakraborty N (2008) Differential evolution technique-based short-term economic generation scheduling of hydrothermal systems. Electr Power Syst Res 78(11):1972–1979. doi:10.1016/j.epsr.2008.04.006

    Article  Google Scholar 

  22. Zhang J, Lin S, Qiu W (2015) A modified chaotic differential evolution algorithm for short-term optimal hydrothermal scheduling. Int J Electr Power Energy Syst 65:159–168. doi:10.1016/j.ijepes.2014.09.041

    Article  Google Scholar 

  23. Sasikala J, Ramaswamy M (2010) Optimal gamma based fixed head hydrothermal scheduling using genetic algorithm. Expert Syst Appl 37(4):3352–3357. doi:10.1016/j.eswa.2009.10.015

    Article  Google Scholar 

  24. Wang Y, Zhou J, Mo L, Zhang R, Zhang Y (2012) Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm. Energy 44(1):657–671. doi:10.1016/j.energy.2012.05.026

    Article  Google Scholar 

  25. Wang Y, Zhou J, Mo L, Ouyang S, Zhang Y (2012) A clonal real-coded quantum-inspired evolutionary algorithm with Cauchy mutation for short-term hydrothermal generation scheduling. Int J Electr Power Energy Syst 43(1):1228–1240. doi:10.1016/j.ijepes.2012.06.036

    Article  Google Scholar 

  26. Yu B, Yuan X, Wang J (2007) Short-term hydro-thermal scheduling using particle swarm optimization method. Energy Convers Manage 48(7): 1902–1908. doi:10.1016/j.enconman.2007.01.034

  27. Mandal KK, Basu M, Chakraborty N (2008) Particle swarm optimization technique based short-term hydrothermal scheduling. Appl Soft Comput 8(4):1392–1399. doi:10.1016/j.asoc.2007.10.006

    Article  Google Scholar 

  28. Hota PK, Barisal AK, Chakrabarti R (2009) An improved PSO technique for short-term optimal hydrothermal scheduling. Electr Power Syst Res 79(7):1047–1053. doi:10.1016/j.epsr.2009.01.001

    Article  Google Scholar 

  29. Amjady N, Soleymanpour HR (2010) Daily hydrothermal generation scheduling by a new modified adaptive particle swarm optimization technique. Electr Power Syst Res 80(6):723–732. doi:10.1016/j.epsr.2009.11.004

    Article  Google Scholar 

  30. Zhang J, Wang J, Yue C (2012) Small population-based particle swarm optimization for short-term hydrothermal scheduling. IEEE Trans Power Syst 27(1):142–152. doi:10.1109/TPWRS.2011.2165089

    Article  Google Scholar 

  31. Rasoulzadeh-Akhijahani A, Mohammadi-Ivatloo B (2015) Short-term hydrothermal generation scheduling by modified dynamic neighborhood learning based particle swarm optimization. Int J Elec Power Energy Syst 67:350–367. doi:10.1016/j.ijepes.2014.12.011

    Article  Google Scholar 

  32. Fakhar MS, Kahif SAR, Saqib MA, Hassan TU (2015) Non cascaded short-term hydro-thermal scheduling using fully-informed particle swarm optimization. Int J Electr Power Energy Syst 73:983–990. doi:10.1016/j.ijepes.2015.06.030

    Article  Google Scholar 

  33. Basu M (2011) Artificial immune system for fixed head hydrothermal power system. Energy 36(1):606–612. doi:10.1016/j.energy.2010.09.057

    Article  Google Scholar 

  34. Roy PK (2013) Teaching learning based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited discharge constraint. Int J Elec Power 53:10–19. doi:10.1016/j.ijepes.2013.03.024

    Article  Google Scholar 

  35. Roy PK, Paul C, Sultana S (2014) Oppositional teaching learning based optimization approach for combined heat and power dispatch. Int J Elec Power 57:392–403. doi:10.1016/j.ijepes.2013.12.006

    Article  Google Scholar 

  36. Bhattacharjee K, Bhattacharya A, Nee Dey SH (2014) Real coded chemical reaction based optimization for short-term hydrothermal scheduling. Appl Soft Comput 24:962–976. doi:10.1016/j.asoc.2014.08.048

    Article  Google Scholar 

  37. Bhattacharjee K, Bhattacharya A, Nee Dey SH (2014) Oppositional real coded chemical reaction based optimization to solve short-term hydrothermal scheduling problems. Int J Elec Power 63:145–157. doi:10.1016/j.ijepes.2014.05.065

    Article  Google Scholar 

  38. Fang N, Zhou J, Zhang R, Liu Y, Zhang Y (2014) A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. Int J Elec Power 62:617–629. doi:10.1016/j.ijepes.2014.05.017

    Article  Google Scholar 

  39. Nguyen TT, Vo DN, Ruong AV (2014) Cuckoo search algorithm for short-term hydrothermal scheduling. Appl Energy 132:276–287. doi:10.1016/j.apenergy.2014.07.017

    Article  Google Scholar 

  40. Nguyen TT, Vo DN (2015) Modified cuckoo search algorithm for short-term hydrothermal scheduling. Electr Power Energy Syst 5:271–281. doi:10.1016/j.ijepes.2014.10.004

    Article  Google Scholar 

  41. Ahmadi A, Kaymanesh A, Siano P, Janghorbani M, Nezhad AE, Sarno D (2015) Evaluating the effectiveness of normal boundary intersection method for short-term environmental/economic hydrothermal self-scheduling. Electr Power Syst Res 123:192–204. doi:10.1016/j.epsr.2015.02.007

    Article  Google Scholar 

  42. Gouthamkumar N, Sharma V, Naresh R (2015) Disruption based gravitational search algorithm for short term hydrothermal scheduling. Expert Syst Appl 42:7000–7011. doi:10.1016/j.eswa.2015.05.017

    Article  Google Scholar 

  43. Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79. doi:10.1016/j.asoc.2015.03.035

  44. Tizhoosh H (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings of the international conference on computational intelligence for modeling control and automation, Austria, pp 695–701. doi:10.1109/CIMCA.2005.1631345

  45. Rahnamayan S, Tizhoosh HR, Salama MMA (2007). Quasi oppositional differential evolution. In: Proceeding of IEEE congress on evolution computing. CEC, pp 2229–2236. doi:10.1109/CEC.2007.4424748

  46. Roy PK, Mandal D (2011) Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow. Electr Power Compon Syst 40(2):236–256. doi:10.1080/15325008.2011.629337

    Article  Google Scholar 

  47. Wang H, Wu ZJ, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714. doi:10.1016/j.ins.2011.03.016

    Article  MathSciNet  Google Scholar 

  48. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Int J Electr Power Energy Syst 35(1):21–33. doi:10.1016/j.ijepes.2011.08.012

    Article  Google Scholar 

  49. Mandal B, Roy PK (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int J Electr Power Energy Syst 53:123–134. doi:10.1016/j.ijepes.2013.04.011

    Article  Google Scholar 

  50. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. doi:10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  51. Sheskin DJ (2006) Handbook of parametric and nonparametric statistical procedures, 4th ed. Chapman & Hall/CRC, Boca Raton

Download references

Acknowledgments

The authors would like to acknowledge Department of Electrical Engineering, NIT Agartala, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Das.

Appendix

Appendix

See Table 28.

Table 28 Multi-fuel cost coefficients of 10 unit system for test system 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bhattacharya, A. & Chakraborty, A.K. Quasi-reflected ions motion optimization algorithm for short-term hydrothermal scheduling. Neural Comput & Applic 29, 123–149 (2018). https://doi.org/10.1007/s00521-016-2529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2529-8

Keywords

Navigation