Skip to main content
Log in

A modular neuro-wavelet based non-unit protection scheme for zone identification and fault location in six-phase transmission line

  • Engineering Applications of Neural Networks
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To overcome the constraints on land availability, infrastructure and environmental problems, six-phase transmission lines have been proposed as a potential alternative to increase the power transfer capability of existing transmission lines without major modification in the existing structure of three-phase double-circuit system. The non-availability of a proper protection scheme due to large number of possible faults has been the prime reason behind the low popularity and acceptance of six-phase system. In this regard, the present work proposes a protection scheme for six-phase transmission line based on the hybridization of discrete wavelet transform and modular artificial neural network. The fault information (approximate coefficients) in the voltage and current signals is captured using discrete wavelet transform. The standard deviation of the coefficients of voltage and current signals in each phase is then computed and given as input to modular artificial neural network, which aims at identifying the faulty section/zone and estimate its location. Test results exhibit that the proposed scheme effectively discriminates the faulted section and estimates the fault location with maximum error of 0.675 %. It offers primary protection to the total line length and also provides remote backup protection for the adjacent reverse section of the line using data at relaying point only and thus avoids the need of a communication link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stewart JR, Wilson DD (1978) High phase order transmission-a feasibility analysis part-I, steady state considerations. IEEE Trans Power Appar Syst 97(6):2300–2307. doi:10.1109/TPAS.1978.354734

    Article  Google Scholar 

  2. Stewart JR, Wilson DD (1978) High phase order transmission-a feasibility analysis part-II- overvoltages and insulation requirements. IEEE Trans Power Appar Syst 97(6):2308–2317. doi:10.1109/TPAS.1978.354735

    Article  Google Scholar 

  3. Stewart JR, Grant IS (1982) High phase order—ready for application. IEEE Trans Power Appar Syst 101(6):1757–1767. doi:10.1109/TPAS.1982.317229

    Article  Google Scholar 

  4. Stewart JR, Kallaur E, Grant IS (1984) Economics of EHV high phase order transmission. IEEE Trans Power Appar Syst 103(11):3386–3392. doi:10.1109/TPAS.1984.318602

    Article  Google Scholar 

  5. Venkata SS, Guyker WC, Booth WH, Kondragunta J, Bhatt NB, Saini NK (1982) EPPC—a computer program for six-phase transmission line design. IEEE Trans Power Appar Syst 101(7):1859–1869. doi:10.1109/TPAS.1982.317457

    Article  Google Scholar 

  6. Bhatt NB, Venkata SS, Guyker WC, Booth WH (1977) Six phase (multi-phase) power transmission systems: fault analysis. IEEE Trans Power Appar Syst 96(3):758–767. doi:10.1109/T-PAS.1977.32389

    Article  Google Scholar 

  7. Nanda SP, Tiwari SN, Singh LP (1981) Fault analysis of six-phase systems. Electr Power Syst Res 4(3):201–211. doi:10.1016/0378-7796(81)90024-9

    Article  Google Scholar 

  8. Venkata SS, Guyker WC, Kondragunta J, Saini NK, Stanek EK (1982) 138-kV, six-phase transmission system: fault analysis. IEEE Trans Power Appar Syst 101(5):1203–1218. doi:10.1109/TPAS.1982.317382

    Article  Google Scholar 

  9. Rebbapragada RV, Panke H, Pierce HJ, Stewart JR, Oppel LJ (1992) Selection and application of relay protection for six phase demonstration project. IEEE Trans Power Deliv 7(4):1900–1911. doi:10.1109/61.156993

    Article  Google Scholar 

  10. Apostolov AP, George W (1992) Protecting NYSEG’s six-phase transmission line, computer applications in power. IEEE 5(4):33–36. doi:10.1109/67.160044

    Google Scholar 

  11. Apostolov AP, Raffensperger RG (1996) Relay protection operation for faults on NYSEG’s six phase transmission line. IEEE Trans Power Deliv 11(1):191–196. doi:10.1109/61.484016

    Article  Google Scholar 

  12. Oppel LJ, Krizauskas E, Austenfeld RH (1998) Evaluation and testing of a single terminal step distance scheme for use on a six phase transmission system. IEEE Trans Power Deliv 13(4):1527–1529. doi:10.1109/61.714851

    Article  Google Scholar 

  13. Oppel L, Krizauskas E (1999) Evaluation of the performance of line protection schemes of NYSEG six phase transmission system. IEEE Trans Power Deliv 14(1):110–115. doi:10.1109/61.736697

    Article  Google Scholar 

  14. Redfern MA (1997) Applying distance relays to protect six-phase ac transmission lines. Proceedings of sixth international conference on developments in power system protection, pp 222–226. doi:10.1049/cp:19970068

  15. Hajjar AA, Mansour MM (2006) A microprocessor and wavelets based relaying approach for on line six-phase transmission lines protection. Proceedings of the 41st Universities Power Engineering Conference UPEC 2006: pp 819–823. doi:10.1109/UPEC.2006.367594

  16. Hajjar AA, Mansour MM (2007) Fault Location For Six-Phase Transmission Lines Based on the Wavelet Transform of The Fault Induced High Frequency Transients. In the proceedings of 42nd International Universities Power Engineering Conference UPEC 2007: pp 252–256. doi:10.1109/UPEC.2007.4468955

  17. Aggarwal RK, Xuan QY, Johns AT, Bennett A (1999) Fault classification technique for double-circuit lines based on a combined unsupervised/supervised neural network. IEEE Trans Power Deliv 14(4):1250–1256. doi:10.1109/PESW.1999.747303

    Article  Google Scholar 

  18. Coury DV, Oleskovicz M, Aggarwal RK (2002) An ANN routine for fault detection, classification, and location in transmission lines. Electric Power Compon Syst 30:1137–1149. doi:10.1080/15325000290085433

    Article  Google Scholar 

  19. Lahiri U, Pradhan AK, Mukhopadhyaya S (2005) Modular neural network-based directional relay for transmission line protection. IEEE Trans Power Syst 20(4):2154–2155. doi:10.1109/TPWRS.2005.857839

    Article  Google Scholar 

  20. Santos RCD, Senger EC (2011) Transmission lines distance protection using artificial neural networks. Electr Power Energy Syst 33:721–730. doi:10.1016/j.ijepes.2010.12.029

    Article  Google Scholar 

  21. Koley E, Yadav A, Thoke AS (2015) A new single-ended artificial neural network-based protection scheme for shunt faults in six-phase transmission line. Int Trans Electr Energy Syst 25(7):1257–1280. doi:10.1002/etep.1901

    Article  Google Scholar 

  22. Minambres Arguelles JF, Zorrozua Arrieta MA, Lazaro Dominguez J, Larrea Jaurrieta B, Sanchez Benito M (2006) A new method for decaying dc offset removal for digital protective relays. Electr Power Syst Res 76:194–199. doi:10.1016/j.epsr.2005.06.002

    Article  Google Scholar 

  23. Martin F, Aguado JA (2003) Wavelet-based ANN approach for transmission line protection. IEEE Trans Power Deliv 18(4):1572–1574. doi:10.1109/TPWRD.2003.817523

    Article  Google Scholar 

  24. Bhowmik PS, Purkait P, Bhattacharya K (2009) A novel wavelet transform aided neural network based transmission line fault analysis method. Electr Power Energy Syst 31:213–219

    Article  Google Scholar 

  25. Dasgupta A, Nath S, Das A (2012) Transmission line fault classification and location using wavelet entropy and neural network. Electric Power Compon Syst 40:1676–1689. doi:10.1080/15325008.2012.716495

    Article  Google Scholar 

  26. Jamil M, Kalama A, Ansari AQ, Rizwan M (2014) Generalized neural network and wavelet transform based approach for fault location estimation of a transmission line. Appl Soft Comput 19:322–332. doi:10.1016/j.asoc.2014.02.020

    Article  Google Scholar 

  27. Vyas Bhargav, Das Biswarup, Maheshwari Rudra Prakash (2014) An improved scheme for identifying fault zone in a series compensated transmission line using undecimated wavelet transform and Chebyshev Neural Network. Electr Power Energy Syst 63:760–768. doi:10.1016/j.ijepes.2014.06.030

    Article  Google Scholar 

  28. Valsan SP, Swarup KS (2009) Wavelet transform based digital protection for transmission lines. Electr Power Energy Syst 31:379–388. doi:10.1016/j.ijepes.2009.03.024

    Article  Google Scholar 

  29. Eldin EMT (2005) A wavelet technique for directional protection for EHV transmission lines with series compensation. Int J Power Energy Syst 25:393–401. doi:10.2316/Journal.203.2005.2.203-3683

    Google Scholar 

  30. Hajjar AA (2013) A high speed non communication protection scheme for power transmission lines based on wavelet transform. Electr Power Syst Res 96:194–200. doi:10.1016/j.epsr.2012.10.018

    Article  Google Scholar 

  31. Costa FB, Souza BA, Brito NSD (2012) Effects of the fault inception angle in fault induced transients. IET Gener Transm Distrib 6:463–471. doi:10.1049/iet-gtd.2011.0539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhojit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koley, E., Verma, K. & Ghosh, S. A modular neuro-wavelet based non-unit protection scheme for zone identification and fault location in six-phase transmission line. Neural Comput & Applic 28, 1369–1385 (2017). https://doi.org/10.1007/s00521-016-2566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2566-3

Keywords

Navigation