Skip to main content

Advertisement

Log in

CRHS: clustering and routing in wireless sensor networks using harmony search algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In wireless sensor networks, cluster head selection and routing are two well-known optimization problems associated with high computational complexity. Harmony search algorithm (HSA) is one of the metaheuristics, used to solve a wide range of NP-Hard problems. In this paper, first we propose an HSA-based cluster head (CH) selection algorithm by devising a fitness function with energy, distance and node degree as parameters. Next, we derived a potential function for the assignment of non-CH nodes to the CHs. Finally, an HSA-based routing algorithm is also proposed using the same parameters, i.e., energy, distance and node degree in the derivation of the fitness function. Three test cases have been considered in this study for performance evaluation. The proposed algorithm has been tested with some of the existing related techniques. Simulation results depict that the proposed algorithm (CRHS) shows superior performance over the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim Y, Kang S (2012) Path management method using partially connected neural network in large-scale heterogeneous sensor network. Neural Comput Appl 21(8):1931–1936

    Article  Google Scholar 

  2. Severini M, Squartini S, Piazza F (2013) Energy-aware lazy scheduling algorithm for energy-harvesting sensor nodes. Neural Comput Appl 23(7–8):1899–1908

    Article  Google Scholar 

  3. Cueva-Fernandez G, Espada JP, García-Díaz V, Gonzalez-Crespo R (2015) Fuzzy decision method to improve the information exchange in a vehicle sensor tracking system. Appl Soft Comput 35:708–716

    Article  Google Scholar 

  4. Cueva-Fernandez G, Espada JP, García-Díaz V, Crespo RG, Garcia-Fernandez N. Fuzzy system to adapt web voice interfaces dynamically in a vehicle sensor tracking application definition. Soft Comput 1–14

  5. Semwal VB, Mondal K, Nandi GC. Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. Neural Comput Appl 1–10

  6. Bari A, Wazed S, Jaekel A, Bandyopadhyay S (2009) A genetic algorithm based approach for energy efficient routing in two-tiered sensor networks. Ad Hoc Netw 7(4):665–676

    Article  Google Scholar 

  7. Bandyopadhyay S, Coyle EJ. An energy efficient hierarchical clustering algorithm for wireless sensor networks. In: INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies, vol 3, pp 1713–1723. IEEE

  8. Zhang P, Xiao G, Tan H-P (2013) Clustering algorithms for maximizing the lifetime of wireless sensor networks with energy-harvesting sensors. Comput Netw 57(14):2689–2704

    Article  Google Scholar 

  9. Crespo RG, Fernandez GG, Martnez OS, Garca-Daz V, Aguilar LJ, Franco ET (2009) Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living

  10. Pottie G, Kaiser W. Wireless integrated network sensors (wins): principles and practice

  11. Agarwal PK, Procopiuc CM (2002) Exact and approximation algorithms for clustering. Algorithmica 33(2):201–226

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39

    Article  Google Scholar 

  13. Yu H, Xiaohui W (2011) Pso-based energy-balanced double cluster-heads clustering routing for wireless sensor networks. Proc Eng 15:3073–3077

    Article  Google Scholar 

  14. Song MAO, Zhao C (2011) Unequal clustering algorithm for wsn based on fuzzy logic and improved ACO. J China Univ Posts Telecommun 18(6):89–97

    Article  Google Scholar 

  15. Bayraklı S, Erdogan SZ (2012) Genetic algorithm based energy efficient clusters (gabeec) in wireless sensor networks. Proc Comput Sci 10:247–254

    Article  Google Scholar 

  16. Singh DK, Srinivas K, Bhagwan Das D (2012) A useful metaheuristic for dynamic channel assignment in mobile cellular systems. Int J Interact Multimed Artif Intell 1(6):6–12

    Google Scholar 

  17. Fukuda S, Yamanaka Y, Yoshihiro T (2014) A probability-based evolutionary algorithm with mutations to learn Bayesian networks. Int J Interact Multimed Artif Intell 3(1):7–13

    Google Scholar 

  18. Geem ZW (2008) Novel derivative of harmony search algorithm for discrete design variables. Appl Math Comput 199(1):223–230

    MathSciNet  MATH  Google Scholar 

  19. Yang X-S (2009) Harmony search as a metaheuristic algorithm. In: Music-inspired harmony search algorithm, pp 1–14. Springer

  20. Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30(14):2826–2841

    Article  Google Scholar 

  21. Younis O, Krunz M, Ramasubramanian S (2006) Node clustering in wireless sensor networks: recent developments and deployment challenges. Netw IEEE 20(3):20–25

    Article  Google Scholar 

  22. Ran G, Zhang H, Gong S (2010) Improving on leach protocol of wireless sensor networks using fuzzy logic

  23. Purohit N, Varma S (2013) Fuzzy logic based clustering in wireless sensor networks: a survey. Int J Electron 100(1):126–141

    Article  Google Scholar 

  24. Bagci H, Yazici A (2010) An energy aware fuzzy unequal clustering algorithm for wireless sensor networks. In: Fuzzy systems (FUZZ), 2010 IEEE international conference on, pp 1–8. IEEE

  25. Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on. IEEE

  26. Ye M, Li C, Chen G, Wu J (2005) EECS: an energy efficient clustering scheme in wireless sensor networks. In: Performance, computing, and communications conference, 2005. IPCCC 2005. 24th IEEE international, pp 535–540. IEEE

  27. Tyagi S, Gupta SK, Tanwar S, Kumar N (2013) EHE-LEACH: enhanced heterogeneous leach protocol for lifetime enhancement of wireless SNs. In: Advances in computing, communications and informatics (ICACCI), 2013 international conference on, pp 1485–1490. IEEE

  28. Kumar D (2014) Performance analysis of energy efficient clustering protocols for maximising lifetime of wireless sensor networks. Wirel Sens Syst IET 4(1):9–16

    MathSciNet  Google Scholar 

  29. Kumar D, Aseri TC, Patel RB (2009) EEHC: energy efficient heterogeneous clustered scheme for wireless sensor networks. Comput Commun 32(4):662–667

    Article  Google Scholar 

  30. Bagci H, Yazici A (2013) An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Appl Soft Comput 13(4):1741–1749

    Article  Google Scholar 

  31. Lee J-S, Cheng W-L (2012) Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. Sens J IEEE 12(9):2891–2897

    Article  Google Scholar 

  32. Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. Wirel Commun IEEE Trans 1(4):660–670

    Article  Google Scholar 

  33. Jiang C-J, Shi W-R, Tang X et al (2010) Energy-balanced unequal clustering protocol for wireless sensor networks. J China Univ Posts Telecommun 17(4):94–99

    Article  Google Scholar 

  34. Bennani K, El Ghanami D (2012) Particle swarm optimization based clustering in wireless sensor networks: the effectiveness of distance altering. In: Complex systems (ICCS), 2012 international conference on, pp 1–4. IEEE

  35. Singh B, Lobiyal DK (2012) Energy-aware cluster head selection using particle swarm optimization and analysis of packet retransmissions in WSN. Proc Technol 4:171–176

    Article  Google Scholar 

  36. Latiff NM, Tsimenidis CC, Sharif BS (2007) Energy-aware clustering for wireless sensor networks using particle swarm optimization. In: Personal, indoor and mobile radio communications, 2007. PIMRC 2007. IEEE 18th international symposium on, pp 1–5. IEEE

  37. Seo H-S, Oh S-J, Lee C-W (2009) Evolutionary genetic algorithm for efficient clustering of wireless sensor networks. In: Consumer communications and networking conference, 2009. CCNC 2009. 6th IEEE, pp 1–5. IEEE

  38. Jin S, Zhou M, Wu AS (2003) Sensor network optimization using a genetic algorithm. In: Proceedings of the 7th world multiconference on systemics, cybernetics and informatics, pp 109–116

  39. Hussain S, Matin AW, Islam O (2007) Genetic algorithm for hierarchical wireless sensor networks. J Netw 2(5):87–97

    Google Scholar 

  40. Rahmanian A, Omranpour H, Akbari M, Raahemifar K (2011) A novel genetic algorithm in leach-c routing protocol for sensor networks. In: Electrical and computer engineering (CCECE), 2011 24th Canadian conference on, pp 001096–001100. IEEE

  41. Younis O, Fahmy S (2004) Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. Mob Comput IEEE Trans 3(4):366–379

    Article  Google Scholar 

  42. Senouci MR, Mellouk A, Senouci H, Aissani A (2012) Performance evaluation of network lifetime spatial-temporal distribution for wsn routing protocols. J Netw Comput Appl 35(4):1317–1328

    Article  Google Scholar 

  43. Abdulla AEAA, Nishiyama H, Kato N (2012) Extending the lifetime of wireless sensor networks: a hybrid routing algorithm. Comput Commun 35(9):1056–1063

    Article  Google Scholar 

  44. Zang XZ, Yu WT, Zhang L, Iqbal S (2015) Path planning based on BI-RRT algorithm for redundant manipulator

  45. Gulzar MM, Ling Q, Yaqoob M, Iqbal S (2015) Realization of an improved path planning strategy. In: Control, automation and information sciences (ICCAIS), 2015 international conference on, pp 384–389. IEEE

  46. Yu J, Qi Y, Wang G, Gu X (2012) A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU Int J Electron Commun 66(1):54–61

    Article  Google Scholar 

  47. Sabet M, Naji HR (2015) A decentralized energy efficient hierarchical cluster-based routing algorithm for wireless sensor networks. AEU-Int J Electron Commun 69(5):790–799

    Article  Google Scholar 

  48. Baraa AA, Khalil EA (2012) A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Appl Soft Comput 12(7):1950–1957

    Article  Google Scholar 

  49. Elhabyan RSY, Yagoub MCE (2015) Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. J Netw Comput Appl 52:116–128

    Article  Google Scholar 

  50. Zeng B, Dong Y (2016) An improved harmony search based energy-efficient routing algorithm for wireless sensor networks. Appl Soft Comput 41:135–147

    Article  Google Scholar 

  51. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  52. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36(4):393–401

    Article  Google Scholar 

  53. Wang A, Yang D, Sun D (2012) A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Comput Electr Eng 38(3):662–671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Lalwani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalwani, P., Das, S., Banka, H. et al. CRHS: clustering and routing in wireless sensor networks using harmony search algorithm. Neural Comput & Applic 30, 639–659 (2018). https://doi.org/10.1007/s00521-016-2662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2662-4

Keywords

Navigation