Skip to main content

Advertisement

Log in

Applications of soft computing techniques for prediction of energy dissipation on stepped spillways

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, numbers type of soft computing including artificial neural network (ANN), support vector machine (SVM), multivariate adaptive regression splines (MARS), and group method of data handling (GMDH) were applied to model and predict energy dissipation of flow over stepped spillways. Results of ANN indicated that this model including hyperbolic tangent sigmoid as transfer function obtained coefficient of determination (R 2 = 0.917) and root-mean-square error (RMSE = 6.927) in testing stage. Results of development of SVM showed that developed model consists of radial basis function as kernel function achieved R 2 = 0.98 and RMSE = 2.61 in validation stage. Developed MARS model with R 2 = 0.99 and RMSE = 0.65 has suitable performance for predicating the energy dissipation. Results of developed GMDH model show with R 2 = 0.95 and RMSE = 5.4 has suitable performance for modeling energy dispersion. Reviewing of results of prepared models showed that all of them have suitable performance to predict the energy dissipation. However, MARS and SVM are more accurate than the others. Attention to structures of GMDH and MARS models declared that Froude number, drop number, and ratio of critical depth to height of step are the most important parameters for modeling energy dissipation. The best radial basis function was found that as best kernel function in developing the SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

SVM:

Support vector machine

GMDH:

Group method of data handling

MARS:

Multivariate adaptive regression splines

DN:

Drop number

Fr:

Froude number

y c/h :

Ratio of critical depth to height of steps

ANFIS:

Adaptive neuro-fuzzy inference system

GEP:

Genetic expression programming

GA:

Genetic algorithm

PSO:

Particle swarm optimization

GP:

Genetic programming

References

  1. Aisenbrey A (1987) Design of small canal structures, 1978. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  2. Azamathulla H, Ghani A (2011) Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544

    Article  Google Scholar 

  3. Azamathulla H, Ghani A, Zakaria N, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng 136(3):165–169. doi:10.1061/(ASCE)HY.1943-7900.0000133

    Article  Google Scholar 

  4. Azamathulla HM, Haghiabi AH, Parsaie A (2016) Prediction of side weir discharge coefficient by support vector machine technique. Water Sci Technol Water Supply 16(4):1002–1016

    Article  Google Scholar 

  5. Azamathulla HM, Wu F-C (2011) Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl Soft Comput 11(2):2902–2905

    Article  Google Scholar 

  6. Azamathulla HM, Yusoff MAM, Hasan ZA (2014) Scour below submerged skewed pipeline. J Hydrol 509:615–620

    Article  Google Scholar 

  7. Boes RM, Chanson H, Matos J, Ohtsu I, Yasuda Y, Takahasi M, Tatewar SP, Ingle RN, Porey PD, Chamani MR, Rajaratnam N (2000) Characteristics of skimming flow over stepped spillways. J Hydraul Eng 126(11):860–873

    Article  Google Scholar 

  8. Chamani MR, Rajaratnam N (1999) Characteristics of skimming flow over stepped spillways. J Hydraul Eng 125(4):361–368

    Article  Google Scholar 

  9. Chanson H (1994) Hydraulics of skimming flows over stepped channels and spillways. J Hydraul Res 32(3):445–460

    Article  Google Scholar 

  10. Chanson H (2002) Hydraulics of stepped chutes and spillways. Taylor and Francis, London

    Google Scholar 

  11. Chen SH (2015) Hydraulic structures. Springer, Berlin

    Book  Google Scholar 

  12. Christodoulou GC (1993) Energy dissipation on stepped spillways. J Hydraul Eng 119(5):644–650

    Article  Google Scholar 

  13. Dehghani M, Saghafian B, Nasiri Saleh F, Farokhnia A, Noori R (2014) Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int J Climatol 34(4):1169–1180

    Article  Google Scholar 

  14. Dong J-R, Zheng C-Y, Kan G-Y, Zhao M, Wen J, Yu J (2015) Applying the ensemble artificial neural network-based hybrid data-driven model to daily total load forecasting. Neural Comput Appl 26(3):603–611

    Article  Google Scholar 

  15. Ebtehaj I, Bonakdari H, Zaji AH, Azimi H, Khoshbin F (2015) GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng Sci Technol Int J 18(4):746–757

    Article  Google Scholar 

  16. Ebtehaj I, Bonakdari H, Zaji AH, Azimi H, Sharifi A (2015) Gene expression programming to predict the discharge coefficient in rectangular side weirs. Appl Soft Comput 35:618–628

    Article  Google Scholar 

  17. Emamgholizadeh S, Bahman K, Bateni SM, Ghorbani H, Marofpoor I, Nielson JR (2016) Estimation of soil dispersivity using soft computing approaches. Neural Comput Appl 1–10. doi:10.1007/s00521-016-2320-x

  18. Emamgolizadeh S, Bateni SM, Shahsavani D, Ashrafi T, Ghorbani H (2015) Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS). J Hydrol 529(Part 3):1590–1600

    Article  Google Scholar 

  19. Felder S, Chanson H (2011) Energy dissipation down a stepped spillway with nonuniform step heights. J Hydraul Eng 137(11):1543–1548

    Article  Google Scholar 

  20. Felder S, Chanson H (2014) Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. J Hydraul Eng 140(4):04014002

    Article  Google Scholar 

  21. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Article  MathSciNet  MATH  Google Scholar 

  22. Frizell KW, Renna FM, Matos J (2013) Cavitation potential of flow on stepped spillways. J Hydraul Eng 139(6):630–636

    Article  Google Scholar 

  23. Gocic M, Shamshirband S, Razak Z, Petković D, Ch S, Trajkovic S (2016) Long-term precipitation analysis and estimation of precipitation concentration index using three support vector machine methods. Adv Meteorol. doi:10.1155/2016/7912357

    Google Scholar 

  24. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1(4):364–378

    Article  MathSciNet  Google Scholar 

  25. Karl A, Lohani A (2010) Development of flood forecasting system using statistical and ANN techniques in the downstream catchment of Mahanadi Basin, India. J Water Resour Protect 2(10):880–887

    Article  Google Scholar 

  26. Khatsuria RM (2004) Hydraulics of spillways and energy dissipators. CRC Press, London

    Book  Google Scholar 

  27. Krishan G, Lohani AK (2015) Application of artificial neural network for groundwater level simulation in Amritsar and Gurdaspur Districts of Punjab, India. J Earth Sci Clim Change 06(05):1–5

    Article  Google Scholar 

  28. Lohani AK, Goel NK, Bhatia KKS (2011) Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains. Hydrol Process 25(2):175–193

    Article  Google Scholar 

  29. Lohani AK, Goel NK, Bhatia KKS (2014) Improving real time flood forecasting using fuzzy inference system. J Hydrol 509:25–41

    Article  Google Scholar 

  30. Lou I, Xie Z, Ung WK, Mok KM (2016) Freshwater algal bloom prediction by extreme learning machine in Macau Storage Reservoirs. Neural Comput Appl 27(1):19–26

    Article  Google Scholar 

  31. Maghsoodi R, Roozgar MS, Sarkardeh H, Azamathulla HM (2012) 3D-simulation of flow over submerged weirs. Int J Model Simul 32(4):237

    Google Scholar 

  32. Mohammad Rezapour Tabari M, Tavakoli S (2016) Effects of stepped spillway geometry on flow pattern and energy dissipation. Arab J Sci Eng 41:1215–1224. doi:10.1007/s13369-015-1874-8

  33. Montanes JL (2005) Hydraulic canals: design, construction, regulation and maintenance. Taylor and Francis, London

    Google Scholar 

  34. Najafzadeh M (2015) Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures. Eng Sci Technol Int J 18(1):42–51

    Article  Google Scholar 

  35. Najafzadeh M (2015) Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions. Ocean Eng 99:85–94

    Article  Google Scholar 

  36. Najafzadeh M (2016) Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. J Pipeline Syst Eng Pract 7(1):06015001

    Article  Google Scholar 

  37. Najafzadeh M, Azamathulla HM (2015) Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J Comput Civ Eng 29(5):04014068

    Article  Google Scholar 

  38. Najafzadeh M, Barani G-A, Azamathulla HM (2013) GMDH to predict scour depth around a pier in cohesive soils. Appl Ocean Res 40:35–41

    Article  Google Scholar 

  39. Najafzadeh M, Barani G-A, Hessami-Kermani M-R (2014) Group method of data handling to predict scour at downstream of a ski-jump bucket spillway. Earth Sci Inf 7(4):231–248

    Article  Google Scholar 

  40. Najafzadeh M, Barani GA (2011) Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci Iran 18(6):1207–1213

    Article  Google Scholar 

  41. Najafzadeh M, Bonakdari H (2016) Application of a neuro-fuzzy GMDH model for predicting the velocity at limit of deposition in storm sewers. J Pipeline Syst Eng Pract 0(0): 06016003

  42. Najafzadeh M, Lim SY (2015) Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci Inf 8(1):187–196

    Article  Google Scholar 

  43. Najafzadeh M, Sattar AMA (2015) Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks. Water Resour Manag 29(7):2205–2219

    Article  Google Scholar 

  44. Najafzadeh M, Tafarojnoruz A (2016) Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ Earth Sci 75(2):1–12

    Article  Google Scholar 

  45. Noori R, Deng Z, Kiaghadi A, Kachoosangi FT (2016) How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? J Hydraul Eng 142(1):04015039

    Article  Google Scholar 

  46. Noori R, Karbassi A, Ashrafi K, Ardestani M, Mehrdadi N, Nabi Bidhendi G-R (2012) Active and online prediction of BOD5 in river systems using reduced-order support vector machine. Environ Earth Sci 67(1):141–149

    Article  Google Scholar 

  47. Noori R, Karbassi AR, Ashrafi K, Ardestani M, Mehrdadi N (2013) Development and application of reduced-order neural network model based on proper orthogonal decomposition for BOD5 monitoring: Active and online prediction. Environ Prog Sustain Energy 32(1):120–127

    Article  Google Scholar 

  48. Noori R, Karbassi AR, Mehdizadeh H, Vesali-Naseh M, Sabahi MS (2011) A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environ Prog Sustain Energy 30(3):439–449

    Article  Google Scholar 

  49. Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, Gousheh MG (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401(3–4):177–189

    Article  Google Scholar 

  50. Noori R, Yeh H-D, Abbasi M, Kachoosangi FT, Moazami S (2015) Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand. J Hydrol 527:833–843

    Article  Google Scholar 

  51. Ohtsu I, Yasuda Y, Takahashi M (2004) Flow characteristics of skimming flows in stepped channels. J Hydraul Eng 130(9):860–869

    Article  Google Scholar 

  52. Parsaie A, Haghiabi A (2015) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resour Manag 29(4):973–985

    Article  Google Scholar 

  53. Parsaie A, Haghiabi AH (2015) Predicting the longitudinal dispersion coefficient by radial basis function neural network. Model Earth Syst Environ 1(4):1–8

    Article  Google Scholar 

  54. Pegram GGS, Officer AK, Mottram SR (1999) Hydraulics of skimming flow on modeled stepped spillways. J Hydraul Eng 125(5):500–510

    Article  Google Scholar 

  55. Rajaratnam N (1990) Skimming flow in stepped spillways. J Hydraul Eng 116(4):587–591

    Article  Google Scholar 

  56. Roushangar K, Akhgar S, Salmasi F, Shiri J (2014) Modeling energy dissipation over stepped spillways using machine learning approaches. J Hydrol 508:254–265

    Article  Google Scholar 

  57. Salmasi F, Özger M (2014) Neuro-fuzzy approach for estimating energy dissipation in skimming flow over stepped spillways. Arab J Sci Eng 39(8):6099–6108

    Article  Google Scholar 

  58. Shahheydari H, Nodoshan EJ, Barati R, Moghadam MA (2014) Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE J Civ Eng 19(4):1174–1182

    Article  Google Scholar 

  59. Sorensen RM (1985) Stepped spillway hydraulic model investigation. J Hydraul Eng 111(12):1461–1472

    Article  Google Scholar 

  60. Swamee PK, Chahar BR (2015) Design of canals. Springer, India

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hamzeh Haghiabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsaie, A., Haghiabi, A.H., Saneie, M. et al. Applications of soft computing techniques for prediction of energy dissipation on stepped spillways. Neural Comput & Applic 29, 1393–1409 (2018). https://doi.org/10.1007/s00521-016-2667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2667-z

Keywords

Navigation