Skip to main content
Log in

An improved dynamic sampling back-propagation algorithm based on mean square error to face the multi-class imbalance problem

  • New Trends in data pre-processing methods for signal and image classification
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an improved dynamic sampling approach (I-SDSA) for facing the multi-class imbalance problem. I-SDSA is a modification of the back-propagation algorithm, which is focused to make a better use of the training samples for improving the classification performance of the multilayer perceptron (MLP). I-SDSA uses the mean square error and a Gaussian function to identify the best samples to train the neural network. Results shown in this article stand out that I-SDSA makes better exploitation of the training dataset and improves the MLP classification performance. In others words, I-SDSA is a successful technique for dealing with the multi-class imbalance problem. In addition, results presented in this work indicate that the proposed method is very competitive in terms of classification performance with respect to classical over-sampling methods (also, combined with well-known features selection methods) and other dynamic sampling approaches, even in training time and size it is better than the over-sampling methods .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This MLP only has two neural network outputs (\(z_{0}^{q}\) and \(z_{1}^{q}\)), because it has been designed to work with datasets of two classes.

References

  1. Abdi L, Hashemi S (2016) To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans Knowl Data Eng 28(1):1041–4347. doi:10.1109/TKDE.2015.2458858

    Article  Google Scholar 

  2. Al-Shahib A, Breitling R, Gilbert D (2005) Feature selection and the class imbalance problem in predicting protein function from sequence. Appl Bioinform 4(3):195–203. doi:10.2165/00822942-200504030-00004

    Article  Google Scholar 

  3. Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult Valued Logic Soft Comput 17(2–3):255–287

    Google Scholar 

  4. Alejo R, García V, Pacheco-Sánchez JH (2015) An efficient over-sampling approach based on mean square error back-propagation for dealing with the multi-class imbalance problem. Neural Process Lett 42(3):603–617. doi:10.1007/s11063-014-9376-3

    Article  Google Scholar 

  5. Alejo R, Monroy-de Jesús J, Pacheco-Sánchez JH, López-González E, Antonio-Velázquez JA (2016) A selective dynamic sampling back-propagation approach for handling the two-class imbalance problem. Appl Sci 6(7):200. doi:10.3390/app6070200. http://www.mdpi.com/2076-3417/6/7/200

  6. Alejo R, Valdovinos R, García V, Pacheco-Sanchez JH (2013) A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios. Pattern Recognit Lett 34(4):380–388

    Article  Google Scholar 

  7. Anand R, Mehrotra K, Mohan C, Ranka S (1993) An improved algorithm for neural network classification of imbalanced training sets. IEEE Trans Neural Netw 4:962–969

    Article  Google Scholar 

  8. Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/

  9. Batista G, Prati R, Monard M (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl 6:20–29

    Article  Google Scholar 

  10. Baumgardner M, Biehl L, Landgrebe D (1992) 220 band aviris hyperspectral image data set: June 12, Indian pine test site 3 (2016). http://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html

  11. Bruzzone L, Serpico SB (1997) Classification of imbalanced remote-sensing data by neural networks. Pattern Recognit Lett 18:1323–1328

    Article  Google Scholar 

  12. Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2009) Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Pacific-Asia conference on knowledge discovery and data mining(PAKDD09). Lecture notes on computer science, vol 5476. Springer, pp 475–482. doi:10.1007/978-3-642-01307-2_43

  13. Chawla N, Cieslak D, Hall L, Ajay J (2008) Automatically countering imbalance and its empirical relationship to cost. Data Min Knowl Discov 17:225–252

    Article  MathSciNet  Google Scholar 

  14. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  15. Duda R, Hart P, Stork D (2001) Pattern classification and scene analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  16. Erguzel TT, Tas C, Cebi M (2015) A wrapper-based approach for feature selection and classification of major depressive disorder–bipolar disorders. Comput Biol Med 64:127–137. doi:10.1016/j.compbiomed.2015.06.021

    Article  Google Scholar 

  17. Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  18. Fernández A, López V, Galar M, del Jesus M, Herrera F (2013) Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl Based Syst 42:97–110

    Article  Google Scholar 

  19. Fernández-Navarro F, Hervás-Martínez C, Gutiérrez PA (2011) A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit 44(8):1821–1833

    Article  MATH  Google Scholar 

  20. Fernández-Navarro F, Hervás-Martínez C, García-Alonso C, Torres-Jiménez M (2011) Determination of relative agrarian technical efficiency by a dynamic over-sampling procedure guided by minimum sensitivity. Expert Syst Appl 38(10):12483–12490

    Article  Google Scholar 

  21. Galar M, Fernández A, Tartas EB, Sola HB, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C 42(4):463–484. doi:10.1109/TSMCC.2011.2161285

    Article  Google Scholar 

  22. García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694

    MATH  Google Scholar 

  23. Han H, Wang WY, Mao BH (2005) Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang DS, Zhang XP, Huang GB (eds) Advances in intelligent computing. ICIC 2005. Lecture notes in computer science, vol 3644. Springer, Berlin, pp 878–887

  24. Hart P (1968) The condensed nearest neighbour rule. IEEE Trans Inf Theory 14(5):515–516

    Article  Google Scholar 

  25. Hatami N, Ebrahimpour R, Ghaderi R (2013) Ecoc-based training of neural networks for face recognition. CoRR abs/1312.3990. http://arxiv.org/abs/1312.3990

  26. He H, Bai Y, Garcia E, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IJCNN. pp 1322–1328

  27. He H, Garcia E (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

  28. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  29. Jing H, Wang B, Yang Y, Xu Y (2009) A general framework of feature selection for text categorization. Springer, Berlin, pp 647–662. doi:10.1007/978-3-642-03070-3_49

    Google Scholar 

  30. Lecun Y, Bottou L, Orr GB, Müller KR (1998) Efficient backprop. In: Orr G, Müller K. (eds) Neural networks—tricks of the trade. Lecture notes in computer science, vol 1524. Springer, pp 5–50

  31. Lin M, Tang K, Yao X (2013) Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans Neural Netw Learn Syst 24(4):647–660

    Article  Google Scholar 

  32. Liu H, Setiono R (1996) Feature selection and classification: a probabilistic wrapper approach. In: 9th International conference on industrial and engineering applications of artificial intelligence and expert systems(IEA-AIE96). pp 419–424

  33. López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141

    Article  Google Scholar 

  34. Luengo J, García S, Herrera F (2009) A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst Appl 36(4):7798–7808

    Article  Google Scholar 

  35. Maldonado S, Weber R, Famili F (2014) Feature selection for high-dimensional class-imbalanced data sets using support vector machines. Inf Sci 286:228–246. doi:10.1016/j.ins.2014.07.015

    Article  Google Scholar 

  36. Mirza B, Lin Z, Liu N (2015) Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149:316–329. doi:10.1016/j.neucom.2014.03.075

    Article  Google Scholar 

  37. Nanni L, Fantozzi C, Lazzarini N (2015) Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158(C):48–61

    Article  Google Scholar 

  38. Prati R, Batista G, Monard M (2004) Class imbalances versus class overlapping: an analysis of a learning system behavior. In: MICAI. pp 312–321

  39. Prati RC, Batista GE, Monard MC (2009) Data mining with imbalanced class distributions: concepts and methods. In: Proceedings of the 4th Indian international conference on artificial intelligence, IICAI, Tumkur, Karnataka, India, 16-18 Dec 2009, pp 359–376

  40. Sánchez JS, García V, Mollineda RA (2011) Exploring synergetic effects of dimensionality reduction and resampling tools on hyperspectral imagery data classification. In: Proceedings of the 7th International conference on machine learning and data mining in pattern recognition, MLDM’11. Springer, Berlin, pp 511–523. http://dl.acm.org/citation.cfm?id=2033831.2033875

  41. Shaffer J (1986) Modified sequentially rejective multiple test procedures. J Am Stat Assoc 81(375): 826–831. http://www.jstor.org/stable/2289016

  42. Show-Jane Y, Yue-Shi L (2009) Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst Appl 36:5718–5727. doi:10.1016/j.eswa.2008.06.108

    Article  Google Scholar 

  43. Sun T, Jiao L, Feng J, Liu F, Zhang X (2015) Imbalanced hyperspectral image classification based on maximum margin. IEEE Geosci Remote Sens Lett 12(3):522–526

    Article  Google Scholar 

  44. Tomek I (1976) Two modifications of CNN. IEEE Trans Syst Man Cybern 7(2):679–772

    MathSciNet  MATH  Google Scholar 

  45. Wang J, Jean JSN (1993) Resolving multifont character confusion with neural networks. Pattern Recognit 26(1):175–187

    Article  Google Scholar 

  46. Wang S, Yao X (2012) Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern Part B 42(4):1119–1130

    Article  Google Scholar 

  47. Xu-Ying L, Qian-Qian L, Zhi-Hua Z (2013) Learning imbalanced multi-class data with optimal dichotomy weights. In: 2013 IEEE 13th international conference on data mining, Dallas, TX, USA, 7–10 Dec 2013, pp 478–487. doi:10.1109/ICDM.2013.51

  48. Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intell Syst 13(2):44–49

    Article  Google Scholar 

  49. Zheng Z, Wu X, Srihari R (2004) Feature selection for text categorization on imbalanced data. SIGKDD Explor Newsl 6(1):80–89. doi:10.1145/1007730.1007741

    Article  Google Scholar 

  50. Zhou ZH, Liu XY (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18:63–77

    Article  Google Scholar 

  51. Zhou ZH, Liu XY (2010) On multi-class cost-sensitive learning. Comput Intell 26(3):232–257

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alejo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alejo, R., Monroy-de-Jesús, J., Ambriz-Polo, J.C. et al. An improved dynamic sampling back-propagation algorithm based on mean square error to face the multi-class imbalance problem. Neural Comput & Applic 28, 2843–2857 (2017). https://doi.org/10.1007/s00521-017-2938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2938-3

Keywords

Navigation