Skip to main content
Log in

Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present analysis examines the combine effects of thermal radiation and velocity slip along a convectively nonlinear stretching surface. Moreover, MHD effects are also considered near the stagnation point flow of Casson nanofluid. Slipped effects are considered with the porous medium to reduce the drag reduction at the surface of the sheet. Main structure of the system is based upon the system of partial differential equations attained in the form of momentum, energy, and concentration equations. To determine the similar solution system of PDEs is rehabilitated into the set of nonlinear ordinary differential equations (ODEs) by employing compatible similarity transformation. Important physical parameters are acquired through obtained differential equations. To determine the influence of emerging parameters, resulting set of ODE’s in term of unknown function of velocity, temperature, and concentration are successfully solved via Keller’s box-scheme. All the obtained unknown functions are discussed in detail after plotting the results against each physical parameter. To analyze the behavior at the surface: skin friction, local Nusselt and Sherwood numbers are also illustrated against the velocity ratio parameter A, Brownian motion Nb, thermophoresis Nt, and thermal radiation parameters R. Results obtained from the set of equations described that skin friction is decreasing function of A, and local Nusselt and Sherwood number demonstrate the significant influenced by Brownian motion Nb, thermophoresis Nt, and radiation parameters R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces. AICHE J 7:26–28

    Article  Google Scholar 

  2. Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AICHE J 7:221–225

    Article  Google Scholar 

  3. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  4. Elbashbeshy EMA (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53:643–651

    MATH  Google Scholar 

  5. Vajravelu K (2001) Viscous flow over a nonlinearly stretching sheet. Appl Math Comput 124:281–288

    MathSciNet  MATH  Google Scholar 

  6. Raptis A, Perdikis C (2006) Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field. Int J Non-Linear Mech 41:527–529

    Article  MATH  Google Scholar 

  7. Abbas Z, Wang Y, Hayat T, Oberlack M (2008) Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int J Non-Linear Mech 43:783–793

    Article  MATH  Google Scholar 

  8. Hiemenz K (1911) Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers PolytechJ K Hiemenz 326:321–324

    Google Scholar 

  9. Homann F (1936) Der Einfluss grosser Zahigkeitbei der Stromung um den Zylinder und um die Kugel. Z Angew Math Mech 16:153–164

    Article  MATH  Google Scholar 

  10. AJ Hunt (1978) Small particle heat exchangers Q7, J. Renew. Sustain. Energy (Lawrence Berkeley LabReport NumberLBL-7841)

  11. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion ofc-Al2O3, SiO2 and TiO2 ultra-fine particles). NetsuBussei 4:227–233 (in Japanese)

    Google Scholar 

  12. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, vol vol. 231/MD-66. ASME; FED, New York, pp 99–105

    Google Scholar 

  13. Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J Renew Sust Energy 2:033102

    Article  Google Scholar 

  14. Huminic G, Huminic A (2012) Application of nanofluids in heat exchangers: a review. Renew Sust Energy Rev 16:5625–5638

    Article  MATH  Google Scholar 

  15. Khaleduzzaman SS, Saidur R, Selvaraj J, Mahbubul IM, Sohel MR, Shahrul IM (2013) Nanofluids for thermal performance improvement in cooling of electronic device. Adv Mater Res 832:218–223

    Article  Google Scholar 

  16. Buongiorno J (2006) Convective transport in nanofluids. ASMEJHeatTransf 128:240–250

    Google Scholar 

  17. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer nanofluids. Renew Sust Eng Rev 11:797–817

    Article  Google Scholar 

  18. Wang XQ, Mujumdar AS (2008) A review on nanofluids–part I: theoretical and numerical investigations. Braz J Chem Eng 25:613–630

    Article  Google Scholar 

  19. Wang XQ, Mujumdar AS (2008) A review on nanofluids–part II: experiments and applications. Braz J Chem Eng 25:631–648

    Article  Google Scholar 

  20. Kakaç S, Pramuanjaroenkij (2009) A review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  21. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  22. Khan WA, Pop I (2010) Boundary layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 532:477–483

    MATH  Google Scholar 

  23. Aziz A (2009) Similarity solution for laminar thermal boundary layerover a flat plate with a convective surface boundary condition. CommunNon-Linear Sci Numer Simul 14(4):1064–1068

    Article  Google Scholar 

  24. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. IntJThermSci 50:1326–1332

    Google Scholar 

  25. Mustafa M, Hayat T, Pop I, Asghar S, Obaidat S (2011) Stagnation point flow of a nanofluid towards a stretching sheet. Int J Heat Mass Transf 54:5588–5594

    Article  MATH  Google Scholar 

  26. Ibrahim W, Shankar B, Mahantesh MM (2013) MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56:1–9

    Article  Google Scholar 

  27. Zheng L, Yang L, Chang Y, Seyf HR, Henry A, Mattheyses AL, Yehl K, Zhang Y, Huang Z, Salaita K (2016) Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat Methods 13(2):143–146

    Article  Google Scholar 

  28. Rassoulinejad-Mousavi SM, Mao Y, Zhang Y (2016) Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties. J Appl Phys 119(24):244304

    Article  Google Scholar 

  29. Seyf HR, Feizbakhshi M (2012) Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. Int J Therm Sci 58:168–179

    Article  Google Scholar 

  30. Rassoulinejad-Mousavi SM, Abbasbandy S (2011) Analysis of forced convection in a circular tube filled with a Darcy-Brinkman-Forchheimer porous medium using spectral homotopy analysis method. ASME J Fluids Eng 133(10):101207

    Article  Google Scholar 

  31. Mohammadian SK, Zhang Y (2015) Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. J Power Sources 296:305–313

    Article  Google Scholar 

  32. Rassoulinejad-Mousavi SM, Abbasbandy S (2011) Analysis of forced convection in a circular tube filled with a Darcy–Brinkman–Forchheimer porous medium using spectral homotopy analysis method. ASME J Fluids Eng 133(10):101207

    Article  Google Scholar 

  33. Rassoulinejad-Mousavi SM, Abbasbandy S, Alsulami HH (2014) Analytical flow study of a conducting Maxwell fluid through a porous saturated channel at various wall boundary conditions. Eur Phys J Plus 129:181 1-10

    Article  Google Scholar 

  34. Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554

    Article  Google Scholar 

  35. Rahman SU, Ellahi R, Nadeem S, Zaigham Zia QM (2016) Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq 218:484–493

    Article  Google Scholar 

  36. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq 220:1–13

    Article  Google Scholar 

  37. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  38. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu-H20 nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  Google Scholar 

  39. Sheikholeslami M, Ganji DD, Younus Javed M, Ellahi R (2015) Effect of thermal radiation on nanofluid flow and heat transfer using two phase model. J Magn Magn Mater 374:36–43

    Article  Google Scholar 

  40. Rashidi S, Dehghan M, Ellahi R, Riaz M, Jamal-Abad MT (2015) Study of stream wise transverse magnetic fluid flow with heat transfer around a porous obstacle. J Magn Magn Mater 378:128–137

    Article  Google Scholar 

  41. Casson N (1959) A flow equation for pigment oil-suspensions of the printing ink type. In: Mill CC (ed) Rheology of disperse systems. Pergamon Press, Oxford

    Google Scholar 

  42. Mustafa M, Hayat T, Pop I, Aziz A (2011) Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf-Asian Res 40:563–576

    Article  Google Scholar 

  43. Nadeem S, Haq RU, Lee C (2012) MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica 19:1550–1553

    Article  Google Scholar 

  44. Nadeem S, Haq RU, Akbar NS, Khan ZH (2013) MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal 52(4):577–582

    Article  Google Scholar 

  45. Sajjad-ur-Rehman R-u-H, Lee C, Nadeem S (2016) Numerical study of non-Newtonian fluid flow over an exponentially stretching surface: an optimal HAM validation. The Brazilian Society of Mechanical Sciences and Engineering. doi:10.1007/s40430-016-0687-3

    Google Scholar 

  46. Nadeem S, Ul Haq R, Akbar NS (2014) MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans Nanotech 13(1):109–115

    Article  Google Scholar 

  47. Haq RU, Nadeem S, Khan ZH, Gideon OT (2014) Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Central European Journal of Physics 12(12):862–871

    Google Scholar 

  48. Mustafa M, Khan JA (2015) Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Adv 5(2015):077148-1–077148-11

    Google Scholar 

  49. Khan M, Munir A, Shahzad A, Shah A (2015) MHD flow and heat transfer of a viscous fluid over a radially stretching power law sheet with suction/injection in a porous medium. J of App Mech and Tech Phys 56(2):231–240

    Article  MathSciNet  MATH  Google Scholar 

  50. Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  Google Scholar 

  51. Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method. Journal of Zeitschrift Fur Naturforschung A, Verlag der Zeitschrift für Naturforschung 70(2):115–124

    Article  Google Scholar 

  52. Akbar NS, Raza M, Ellahi R (2016) Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Appl Nanosci 6:359–370

    Article  Google Scholar 

Download references

Acknowledgements

The second and fourth authors would like to acknowledge and express their gratitude to the United Arab Emirates University, Al Ain, UAE for providing the financial support with Grant No. 31S212-UPAR(9)2015.

The first author is very thankful to University Grants Commission, India, for providing the opportunity to do this research work under UGC–Faculty Development Programme (FDP), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Ul Haq.

Ethics declarations

Conflict of interest

It is declared that there is no actual or potential conflict of interest with mathematical expressions and explanations on mathematical terms including any financial, personal, or other relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besthapu, P., Haq, R.U., Bandari, S. et al. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput & Applic 31, 207–217 (2019). https://doi.org/10.1007/s00521-017-2992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2992-x

Keywords

Navigation