Skip to main content
Log in

Powered Gaussian kernel spectral clustering

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Spectral clustering is a useful tool for clustering data. It separates data points into different clusters using eigenvectors corresponding to eigenvalues of the similarity matrix from a data set. There are various types of similarity functions to be used for spectral clustering. In this paper, we propose a powered Gaussian kernel function for spectral clustering. We first consider a Gaussian kernel similarity function with a power parameter, and then use a modified correlation comparison algorithm to estimate the power parameter. This parameter can be used for separating points that actually lie on different clusters, but with small distance. We then use the maximum value among all minimum distances between data points to get better clustering results. Using the estimated power parameter and the maximum value among minimum distances is able to improve spectral clustering. Some numerical data, real data sets, and images are used for making comparisons between the powered Gaussian kernel spectral clustering algorithm and some existing methods. The comparison results show the superiority and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  MATH  Google Scholar 

  2. Dubois D, Prade H (1980) Fuzzy Sets and systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  3. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  4. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, pp 281–297

  5. Pollard D (1982) Quantization and the method of k-means. IEEE Trans Inf Theory 28:199–205

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  7. Yang MS (1993) A survey of fuzzy clustering. Math Comput Model 18:1–16

    Article  MathSciNet  MATH  Google Scholar 

  8. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1:98–110

    Article  Google Scholar 

  9. Yang MS, Lai CY (2011) A robust automatic merging possibilistic clustering method. IEEE Trans Fuzzy Syst 19:26–41

    Article  Google Scholar 

  10. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17:790–799

    Article  Google Scholar 

  11. Wu KL, Yang MS (2007) Mean shift-based clustering. Pattern Recogn 40:3035–3052

    Article  MATH  Google Scholar 

  12. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  MathSciNet  Google Scholar 

  13. Nascimento MCV, de Carvalho ACPLF (2011) Spectral methods for graph clustering—a survey. Eur J Oper Res 211:221–231

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia H, Ding S, Xu X, Nie R (2014) The latest research progress on spectral clustering. Neural Comput Appl 24:1477–1486

    Article  Google Scholar 

  15. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  16. Kong W, Hu S, Zhang J, Dai G (2013) Robust and smart spectral clustering from normalized cut. Neural Comput Appl 23:1503–1512

    Article  Google Scholar 

  17. Newman M (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:36–104

    Article  MathSciNet  Google Scholar 

  18. Oliveira S, Ribeiro JFF, Seok SC (2009) A spectral clustering algorithm for manufacturing cell formation. Comput Ind Eng 57:1008–1014

    Article  Google Scholar 

  19. Ding S, Jia H, Zhang L, Jin F (2014) Research of semi-supervised spectral clustering algorithm based on pairwise constraints. Neural Comput Appl 24:211–219

    Article  Google Scholar 

  20. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

    Google Scholar 

  21. Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. In: Advances in neural information processing systems

  22. Li XY, Guo LJ (2012) Constructing affinity matrix in spectral clustering based on neighbor propagation. Neurocomputing 97:125–130

    Article  Google Scholar 

  23. Zhang X, Li J, Yu H (2011) Local density adaptive similarity measurement for spectral clustering. Pattern Recogn Lett 32:352–358

    Article  Google Scholar 

  24. Jia H, Ding S, Du M (2015) Self-tuning p-spectral clustering based on shared nearest neighbors. Cogn Comput 7:622–632

    Article  Google Scholar 

  25. Jia H, Ding S, Du M, Xue Y (2016) Approximate normalized cuts without Eigen-decomposition. Inf Sci 374:135–150

    Article  Google Scholar 

  26. Tasdemir K, Yalcin B, Yildirim I (2015) Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures. Pattern Recogn 48:1465–1477

    Article  Google Scholar 

  27. Donath W, Hoffman A (1973) Lower bounds for the partitioning of graphs. IBM J Res Dev 17:420–425

    Article  MathSciNet  MATH  Google Scholar 

  28. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23:298–305

    MathSciNet  MATH  Google Scholar 

  29. Chang H, Yeung DY (2008) Robust path-based spectral clustering. Pattern Recogn 41:191–203

    Article  MATH  Google Scholar 

  30. Yang MS, Wu KL (2004) A similarity-based robust clustering method. IEEE Trans Pattern Anal Mach Intell 26:434–448

    Article  Google Scholar 

  31. Blake CL, Merz CJ (1998) UCI Repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. University of California, Department of Information and Computer Science, Irvine, CA

  32. Rebagliati N, Verri A (2011) Spectral clustering with more than K eigenvectors. Neurocomputing 74:1391–1401

    Article  Google Scholar 

  33. Huang L, Li R, Chen H, Gu X, Wen K, Li Y (2014) Detecting network communities using regularized spectral clustering algorithm. Artif Intell Rev 41:579–594

    Article  Google Scholar 

  34. Lei J, Rinaldo A (2015) Consistency of spectral clustering in stochastic block models. Ann Stat 43:215–237

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and suggestions to improve the presentation of the paper. This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 105-2118-M-033-004-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miin-Shen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nataliani, Y., Yang, MS. Powered Gaussian kernel spectral clustering. Neural Comput & Applic 31 (Suppl 1), 557–572 (2019). https://doi.org/10.1007/s00521-017-3036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3036-2

Keywords

Navigation