Skip to main content
Log in

Sampling-based online motion planning for mobile robots: utilization of Tabu search and adaptive neuro-fuzzy inference system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Despite the proven advantages of sampling-based motion planning algorithms, their inability to handle online navigation tasks and providing low-cost solutions make them less efficient in practice. In this paper, a novel sampling-based algorithm is proposed which is able to plan in an unknown environment and provides solutions with lower cost in terms of path length, runtime and stability of the results. First, a fuzzy controller is designed which incorporates the heuristic rules of Tabu search to enable the planner for solving online navigation tasks. Then, an adaptive neuro-fuzzy inference system (ANFIS) is proposed such that it constructs and optimizes the fuzzy controller based on a set of given input/output data. Furthermore, a heuristic dataset generator is implemented to provide enough data for the ANFIS using a randomized procedure. The performance of the proposed algorithm is evaluated through simulation in different motion planning queries. Finally, the proposed planner is compared to some of the similar motion planning algorithms to support the claim of superiority of its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Choset HM (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

    MATH  Google Scholar 

  2. Canny J (1988) The complexity of robot motion planning. MIT Press, Cambridge

    MATH  Google Scholar 

  3. Tang S, Khaksar W, Ismail N, Ariffin M (2012) A review on robot motion planning approaches. Pertanika J Sci Technol 20:15–29

    Google Scholar 

  4. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100:108–120

    Article  MathSciNet  MATH  Google Scholar 

  5. Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean shortest paths. In: 26th annual symposium on foundations of computer science. IEEE, pp 155–164

  6. Liu YS, Ramani K, Liu M (2011) Computing the inner distance of volumetric models for articulated shape description with a visibility graph. IEEE Trans Pattern Anal Mach Intell 33:2538–2544

    Article  Google Scholar 

  7. Ramer C, Reitelshofer S, Franke J (2013) A robot motion planner for 6-DOF industrial robots based on the cell decomposition of the workspace. In: Proceedings of the 44th international symposium on robotics (ISR), pp 1–4

  8. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–98

    Article  Google Scholar 

  9. Ng J, Bräunl T (2007) Performance comparative of bug navigation algorithms. J Intell Rob Syst 50:73–84

    Article  Google Scholar 

  10. Ivan V, Zarubin D, Toussaint M, Komura T, Vijayakumar S (2013) Topology-based representations for motion planning and generalisation in dynamic environments with interactions. Int J Robot Res 32(9–10):1151–1163

    Article  Google Scholar 

  11. Hsu D, Tingting J, Reif J, Zheng S (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: IEEE international conference on robotics and automation, 2003. Proceedings, ICRA ‘03, vol 4423, pp 4420–4426

  12. Khaksar W, Hong TS, Khaksar M, Motlagh O (2013) A low dispersion probabilistic roadmaps (LD-PRM) algorithm for fast and efficient sampling-based motion planning. Int J Adv Robot Syst 10(11):397

    Article  Google Scholar 

  13. Yershova A, Jaillet L, Siméon T, LaValle SM (2005) Dynamic-domain RRTs: efficient exploration by controlling the sampling domain. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005, ICRA 2005. IEEE, pp 3856–3861

  14. Masehian E, Sedighizadeh D (2013) An improved particle swarm optimization method for motion planning of multiple robots. In: Martinoli A et al (eds) Distributed autonomous robotic systems, vol 83, pp 175–188

  15. Buniyamin N, Sariff N, Wan Ngah W, Mohamad Z (2011) Robot global path planning overview and a variation of ant colony system algorithm. Int J Math Comput Simul 5:9–16

    Google Scholar 

  16. Jaradat MAK, Garibeh MH, Feilat EA (2012) Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field. Soft Comput 16:153–164

    Article  Google Scholar 

  17. Motlagh O, Nakhaeinia D, Tang SH, Karasfi B, Khaksar W (2013) Automatic navigation of mobile robots in unknown environments. Neural Comput Appl 24(7–8):1569–1581

    Google Scholar 

  18. Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput 17:1283

    Article  Google Scholar 

  19. Mei H, Tian Y, Zu L (2006) A hybrid ant colony optimization algorithm for path planning of robot in dynamic environment. Int J Inf Technol 12:78–88

    Google Scholar 

  20. Kala R (2012) Multi-robot path planning using co-evolutionary genetic programming. Expert Syst Appl 39:3817–3831

    Article  Google Scholar 

  21. Tsianos KI, Sucan IA, Kavraki LE (2007) Sampling-based robot motion planning: towards realistic applications. Comput Sci Rev 1:2–11

    Article  Google Scholar 

  22. Ferguson D, Kalra N, Stentz A (2006) Replanning with rrts. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006, ICRA 2006. IEEE, pp 1243–1248

  23. Um D, Gutierrez MA, Bustos P, Kang S (2013) Simultaneous planning and mapping (SPAM) for a manipulator by best next move in unknown environments. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 5273–5278

  24. Khaksar W, Hong TS, Khaksar M, Motlagh ORE (2012) Sampling-based Tabu search approach for online path planning. Adv Robot 26:1013–1034

    Google Scholar 

  25. Boor V, Overmars MH, van der Stappen AF (1999) The Gaussian sampling strategy for probabilistic roadmap planners. In: IEEE international conference on robotics and automation, 1999. Proceedings. IEEE, pp 1018–1023

  26. Wedge NA, Brtanicky MS (2011) Using path-length localized RRT-like search to solve challenging planning problems. In: Proceedings of IEEE international conference on robotics and automation, pp 3713–3718 (2011)

  27. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Dobson A, Bekris K (2013) Sparse roadmap spanners for asymptotically near-optimal motion planning. Int J Robot Res 33:18–47

    Article  Google Scholar 

  29. LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20:378–400

    Article  Google Scholar 

  30. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30:846–894

    Article  MATH  Google Scholar 

  31. Nieuwenhuisen D, Overmars MH (2004) Useful cycles in probabilistic roadmap graphs. In: 2004 IEEE international conference on robotics and automation, 2004. Proceedings, ICRA’04. IEEE, pp 446–452

  32. Thomas S, Morales M, Tang X, Amato NM (2007) Biasing samplers to improve motion planning performance. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 1625–1630

  33. Tian Y, Yan L, Park G-Y, Yang S-H, Kim Y-S, Lee S-R, Lee C-Y (2007) Application of RRT-based local path planning algorithm in unknown environment. In: International symposium on computational intelligence in robotics and automation, 2007. CIRA 2007. IEEE, pp 456–460

  34. Bekris KE, Kavraki LE (2007) Greedy but safe replanning under kinodynamic constraints. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 704–710

  35. Chang-an L, Jin-gang C, Guo-dong L, Chun-yang L (2008) Mobile robot path planning based on an improved rapidly-exploring random tree in unknown environment. In: IEEE international conference on automation and logistics, 2008, ICAL 2008. IEEE, pp 2375–2379

  36. Nieto J, Slawinski E, Mut V, Wagner B (2010) Online path planning based on rapidly-exploring random trees. In: 2010 IEEE international conference on industrial technology (ICIT). IEEE, pp 1451–1456

  37. Chakravorty S, Kumar S (2011) Generalized sampling-based motion planners. IEEE Trans Syst Man Cybern Part B Cybern 41:855–866

    Article  Google Scholar 

  38. Jaillet L, Yershova A, La Valle SM, Siméon T (2005) Adaptive tuning of the sampling domain for dynamic-domain RRTs. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005). IEEE, pp 2851–2856

  39. Luna R, Sucan IA, Moll M, Kavraki LE (2013) Anytime solution optimization for sampling-based motion planning. In: Proceedings of the IEEE international conference on robotics and automation, pp 5068–5074

  40. LaValle SM (2011) Motion planning, part I: the essentials. IEEE Robot Autom Mag 18:79–89

    Article  Google Scholar 

  41. Hsu D, Sánchez-Ante G, Sun Z (2005) Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005, ICRA 2005. IEEE, pp 3874–3880

  42. Burns B, Brock O (2005) Sampling-based motion planning using predictive models. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005, ICRA 2005. IEEE, pp 3120–3125

  43. Rodriguez S, Tang X, Lien JM, Amato NM (2006) An obstacle-based rapidly-exploring random tree. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006, ICRA 2006. IEEE, pp 895–900

  44. Szádeczky-Kardoss E, Kiss B (2006) Extension of the rapidly exploring random tree algorithm with key configurations for nonholonomic motion planning. In: IEEE international conference on mechatronics, 2006. IEEE, pp 363–368

  45. W. Wang, Y. Li, X. Xu, S.X. Yang (2010) An adaptive roadmap guided Multi-RRTs strategy for single query path planning. In: 2010 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2871–2876

  46. Fleury S, Soueres P, Laumond J-P, Chatila R (1995) Primitives for smoothing mobile robot trajectories. IEEE Trans Robot Autom 11:441–448

    Article  Google Scholar 

  47. Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7:785–797

    Article  Google Scholar 

  48. Urmson C, Simmons R (2003) Approaches for heuristically biasing RRT growth. In: Proceedings. 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS 2003). IEEE, pp 1178–1183

  49. Ferguson D, Stentz A (2006) Anytime RRTs. In: 2006 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 5369–5375

  50. Wedge NA, Branicky MS (2008) On heavy-tailed runtimes and restarts in rapidly-exploring random trees. In: Twenty-third AAAI conference on artificial intelligence, pp 127–133

  51. Dan Zhu Q, Bin Wu Y, Qiang Wu G, Wang X (2009) An improved anytime RRTs algorithm. In: International conference on artificial intelligence and computational intelligence, 2009, AICI’09. IEEE, pp 268–272

  52. Clawson Z, Ding X, Englot B, Frewen TA, Sisson WM, Vladimirsky A (2015) A bi-criteria path planning algorithm for robotics applications. arXiv preprint arXiv:1511.01166

  53. Pareekutty N, James F, Ravindran B, Shah SV (2016) RRT-HX: RRT with heuristic extend operations for motion planning in robotic systems. In: ASME 2016 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V05AT07A052–V05AT07A052

  54. Yang L, Xiao J, Qi J, Yang L, Wang L, Han J (2016) GART: an environment-guided path planner for robots in crowded environments under kinodynamic constraints. Int J Adv Rob Syst 13(6):1–18

    Google Scholar 

  55. Wang C, Meng MQH (2016) Variant step size RRT: an efficient path planner for UAV in complex environments. In: IEEE international conference on real-time computing and robotics (RCAR), pp 555–560

  56. Glover F (1989) Tabu search—part I. OSRA J Comput 3:190–206

    MATH  Google Scholar 

  57. Khaksar W, Tang SH, Khaksar M, Motlagh O (2014) A fuzzy-Tabu real time controller for sampling-based motion planning in unknown environment. Appl Intell. doi:10.1007/s10489-014-0572-7

    Google Scholar 

  58. Negnevitsky M (2005) Artificial intelligence: a guide to intelligent systems. Pearson Education, Upper Saddle River

    Google Scholar 

  59. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  60. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2:267–278

    Google Scholar 

  61. Jang J-S (1996) Input selection for ANFIS learning. In: Proceedings of the fifth IEEE international conference on fuzzy systems. IEEE, pp 1493–1499

Download references

Acknowledgements

This work is partially supported by The Research Council of Norway as a part of the Multimodal Elderly Care Systems (MECS) Project, under Grant Agreement 247697 and by Malaysia Fundamental Research Grant Scheme (FRGS) (Grant No. FRGS/2/2014/TK06/UNITEN/02/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weria Khaksar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksar, W., Hong, T.S., Sahari, K.S.M. et al. Sampling-based online motion planning for mobile robots: utilization of Tabu search and adaptive neuro-fuzzy inference system. Neural Comput & Applic 31 (Suppl 2), 1275–1289 (2019). https://doi.org/10.1007/s00521-017-3069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3069-6

Keywords

Navigation