Skip to main content
Log in

Distributed cooperative learning algorithms using wavelet neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the distributed cooperative learning (DCL) problems over networks, where each node only has access to its own data generated by the unknown pattern (map or function) uniformly, and all nodes cooperatively learn the pattern by exchanging local information with their neighboring nodes. These problems cannot be solved by using traditional centralized algorithms. To solve these problems, two novel DCL algorithms using wavelet neural networks are proposed, including continuous-time DCL (CT-DCL) algorithm and discrete-time DCL (DT-DCL) algorithm. Combining the characteristics of neural networks with the properties of the wavelet approximation, the wavelet series are used to approximate the unknown pattern. The DCL algorithms are used to train the optimal weight coefficient matrix of wavelet series. Moreover, the convergence of the proposed algorithms is guaranteed by using the Lyapunov method. Compared with existing distributed optimization strategies such as distributed average consensus (DAC) and alternating direction method of multipliers (ADMM), our DT-DCL algorithm requires less information communications and training time than ADMM strategy. In addition, it achieves higher accuracy than DAC strategy when the network consists of large amounts of nodes. Moreover, the proposed CT-DCL algorithm using a proper step size is more accurate than the DT-DCL algorithm if the training time is not considered. Several illustrative examples are presented to show the efficiencies and advantages of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen W, Hua S, Ge SS (2014) Consensus-based distributed cooperative learning control for a group of discrete-time nonlinear multi-agent systems using neural networks. Automatica 50(9):2254–2268

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd S, Parikh N, Chu E et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  3. Li J, Lin X, Rui X et al (2014) A distributed approach toward discriminative distance metric learning. IEEE Trans Neural Netw Learn Syst 26(9):2111–2122

    Article  MathSciNet  Google Scholar 

  4. Tekin C, Van der SM (2015) Distributed online learning via cooperative contextual bandits. Signal Process IEEE Trans 63(14):3700–3714

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen T, Wang C, Hill DJ (2014) Rapid oscillation fault detection and isolation for distributed systems via deterministic learning. IEEE Trans Neural Netw Learn Syst 25(6):1187–1199

    Article  Google Scholar 

  6. Mertikopoulos P, Belmega EV, Moustakas AL et al (2012) Distributed learning policies for power allocation in multiple access channels. Onomr 30(1):96–106

    Google Scholar 

  7. Predd JB, Kulkarni SR, Vincent PH (2005) Distributed learning in wireless sensor networks. IEEE Signal Process Mag 23(4):56–69

    Article  Google Scholar 

  8. Scardapane S, Wang D, Panella M (2016) A decentralized training algorithm for echo state networks in distributed big data applications. Neural Netw 78:65–74

    Article  MATH  Google Scholar 

  9. Georgopoulos L, Hasler M (2014) Distributed machine learning in networks by consensus. Neurocomputing 124(2):2–12

    Article  Google Scholar 

  10. Chen J, Sayed AH (2011) Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans Signal Process 60(8):4289–4305

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen W, Hua S, Zhang H (2015) Consensus-based distributed cooperative learning from closed-loop neural control systems. IEEE Trans Neural Netw Learn Syst 26(2):331–345

    Article  MathSciNet  Google Scholar 

  12. Ai W, Chen W, Xie J (2016) A zero-gradient-sum algorithm for distributed cooperative learning using a feedforward neural network with random weights. Inf Sci 373:404–418

    Article  Google Scholar 

  13. Ai W, Chen W, Xie J (2016) Distributed learning for feedforward neural networks with random weights using an event-triggered communication scheme. Neurocomputing 224:184–194

    Article  Google Scholar 

  14. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  MATH  Google Scholar 

  15. Xiao L, Boyd S, Kim SJ (2007) Distributed average consensus with least-mean-square deviation. J Parallel Distrib Comput 67(1):33–46

    Article  MATH  Google Scholar 

  16. Aysal T, Coates M, Rabbat M (2008) Distributed average consensus with dithered quantization. IEEE Trans Signal Process 56(10):4905–4918

    Article  MathSciNet  MATH  Google Scholar 

  17. Lim C, Lee S, Choi JH et al (2014) Efficient implementation of statistical model-based voice activity detection using Taylor series approximation. IEICE Trans Fundam Electron Commun Comput Sci 97(3):865–868

    Article  Google Scholar 

  18. Sharapudinov II (2014) Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier–Haar series. Russ Acad Sci Sb Math 205(205):145–160

    MathSciNet  MATH  Google Scholar 

  19. Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16(1):57–67

    Article  Google Scholar 

  20. Yang C, Jiang K et al (2017) Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans Ind Inf 13(3):1162–1171

    Article  Google Scholar 

  21. Yang C, Wang X et al (2017) Neural-learning based telerobot control with guaranteed performance. IEEE Trans Cybern (in press). doi:10.1109/TCYB.2016.2573837

  22. Cui R, Yang C et al (2017) Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans Syst Man Cybern Syst 47(6):1019–1029

    Article  Google Scholar 

  23. Wu S, Er MJ (2000) Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 30(2):358–364

    Article  Google Scholar 

  24. Ferrari S, Stengel RF (2005) Smooth function approximation using neural networks. IEEE Trans Neural Netw 16(1):24–38

    Article  Google Scholar 

  25. Yang C, Yi Z, Zuo L (2008) Function approximation based on twin support vector machines. In: IEEE conference on cybernetics and intelligent systems, pp 259–264

  26. Zhang Q, Benveniste A (1991) Approximation by nonlinear wavelet networks. In: International conference on acoustics, speech and signal processing. ICASSP-91. pp 3417–3420

  27. Zhang Q, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3(6):889

    Article  Google Scholar 

  28. Delyon B, Juditsky A, Benveniste A (1995) Accuracy analysis for wavelet approximations. IEEE Trans Neural Netw 6(2):332–348

    Article  Google Scholar 

  29. Zainuddin Z, Pauline O (2011) Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data. Appl Soft Comput 11(8):4866–4874

    Article  Google Scholar 

  30. Zainuddin Z, Ong P (2013) Design of wavelet neural networks based on symmetry fuzzy C-means for function approximation. Neural Comput Appl 23(1):247–259

    Article  Google Scholar 

  31. Zainuddin Z, Ong P (2016) Optimization of wavelet neural networks with the firefly algorithm for approximation problems. Neural Comput Appl 28(7):1715–1728

    Article  Google Scholar 

  32. Hou M, Han X, Gan Y (2009) Constructive approximation to real function by wavelet neural networks. Neural Comput Appl 18(8):883–889

    Article  Google Scholar 

  33. Oysal Y, Yilmaz S (2010) An adaptive wavelet network for function learning. Neural Comput Appl 19(3):383–392

    Article  Google Scholar 

  34. Xu J, Yan R (2011) Adaptive learning control for finite interval tracking based on constructive function approximation and wavelet. IEEE Trans Neural Netw 22(6):893–905

    Article  Google Scholar 

  35. Alexandridis AK, Zapranis AD (2013) Wavelet neural networks: a practical guide. Neural Netw 42(1):1–27

    Article  MATH  Google Scholar 

  36. Yang C, Wang X et al (2016) Teleoperation control based on combination of wave variable and neural networks. IEEE Trans Syst Man Cybern Syst (in press). doi:10.1109/TSMC.2016.2615061

  37. Chen S, Zhao H, Zhang S et al (2013) Study of ultra-wideband fuze signal processing method based on wavelet transform. IET Radar Sonar Navig 8(3):167–172

    Article  Google Scholar 

  38. Courroux S, Chevobbe S, Darouich M et al (2013) Use of wavelet for image processing in smart cameras with low hardware resources. J Syst Archit 59(10):826–832

    Article  Google Scholar 

  39. Pavez E, Silva JF (2012) Analysis and design of wavelet-packet cepstral coefficients for automatic speech recognition. Speech Commun 54(6):814–835

    Article  Google Scholar 

  40. Siddiqi MH, Lee SW, Khan AM (2014) Weed image classification using wavelet transform, stepwise linear discriminant analysis and support vector machines for an automatic spray control system. J Inf Sci Eng 30(4):1227–1244

    Google Scholar 

  41. Yan R, Gao RX, Chen X (2014) Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process 96(5):1–15

    Article  Google Scholar 

  42. Ganjefar S, Tofighi M (2015) Single-hidden-layer fuzzy recurrent wavelet neural network: applications to function approximation and system identification. Inf Sci 294:269–285

    Article  MathSciNet  MATH  Google Scholar 

  43. Bazaraa MS, Goode JJ (1973) On symmetric duality in nonlinear programming. Oper Res 21(21):1–9

    Article  MathSciNet  MATH  Google Scholar 

  44. Lu J, Tang CY (2011) Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case. IEEE Trans Autom Control 57(9):5474–5479

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Numbers: 61503292, 61673308, 61673014), which made it possible to undertake this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dai.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Additional information

This work is supported by the National Natural Science Foundation of China (Grant numbers: 61503292, 61673308, 61673014).

Appendices

Appendix A

Proof of Theorem 1

For convenience of analyzing the convergence of the CT-DCL algorithm, we rewrite algorithm (20) in a matrix form as

$$\begin{aligned}{l} {\left\{ \begin{array}{ll} \dot{W}(t)=-\gamma (H^TH+\sigma \otimes I_{ml})^{-1}(\mathcal {L}\otimes I_{ml})W(t)\\ {W}(0)=(H^TH+\sigma \otimes I_{ml})^{-1}H^TY \end{array}\right. }, \end{aligned}$$
(33)

where \(W(t)=[W_1^T(t),W_2^T(t),...,W_N^T(t)]^T\in {\mathbf{R}}^{mlN\times 1}\), \(H=diag \{H_1,H_2,\ldots,H_N\}\in {\mathbf{R}}^{mN_iN\times mlN}\), \(\sigma =diag\{\sigma _1,\sigma _2,\ldots,\sigma _N\}\in {\mathbf{R}}^{N\times N}\), \(Y=[Y_1^T,Y_2^T,\ldots,Y_N^T]^T\in {\mathbf{R}}^{mN_iN\times 1}\), \({\mathcal {L}}\) is the Laplacian matrix of the graph \({\mathcal {G}}\).

Proof

Consider CT-DCL algorithm (20), the following Lyapunov function candidate is constructed:

$$\begin{aligned} V(W(t))=\frac{1}{2}\sum _{i=1}^{N}\left( (W^*-W_i)^T(H_i^TH_i+\sigma _iI_{ml})(W^*-W_i)\right) , \end{aligned}$$
(34)

where \(W^*,W_i \in {\mathbf{R}}^{ml\times 1}\), \(V:{\mathbf{R}}^{ml}\rightarrow {\mathbf{R}}\).

It is easy to verify that

$$\begin{aligned} {V}(W(t))\ge \frac{\,\underline{\theta }\,}{\,2\,}\sum _{i=1}^{N}\parallel W^*-W_i(t)\parallel ^2, \end{aligned}$$
(35)

In addition, the following inequality holds (Proof see “Appendix C''):

$$\begin{aligned} {V}(W(t))\le \frac{\,\overline{\varTheta }\,}{\,2\lambda _2\,}W(t)^T({\mathcal {L}}\otimes I_{ml})W(t). \end{aligned}$$
(36)

Now, we are in the position to give the main result on the convergence of algorithm (20). Consider Lyapunov function candidate (34). Then, along the solution of (20), we have

$$\begin{aligned} \frac{\mathrm{d}V(W(t))}{\mathrm{d}t}=&-\sum _{i=1}^{N}\dot{W_i}^T\left( H_i^TH_i+\sigma _iI_{ml}\right) ^T(W^*-\!W_i)\nonumber \\ =&-W^{*T}\sum _{i=1}^{N}\left( H_i^TH_i+\sigma _iI_{ml}\right) \dot{W_i}(t)\nonumber \\&+\sum _{i=1}^{N}W_i^T\left( H_i^TH_i+\sigma _iI_{ml}\right) \dot{W_i}(t)\nonumber \\ =&-\gamma W(t)^T\left( {\mathcal {L}}\otimes I_{ml}\right) W(t). \end{aligned}$$
(37)

Since graph \({\mathcal {G}}\) is undirected and connected, we deduce that \(\sum _{i=1}^{N}(H_i^TH_i+\sigma _iI_{ml})\dot{W_i}(t)=\gamma \sum _{i=1}^{N}\sum \nolimits _{j\in {\mathcal {N}}_{i}}a_{ij}\left( W_j(t)-W_i(t)\right) =0\) according to CT-DCL algorithm (20). Then,

$$\begin{aligned} \frac{\mathrm{d}V(W(t))}{\mathrm{d}t}=-\gamma W(t)^T({\mathcal {L}}\otimes I_{ml})W(t). \end{aligned}$$
(38)

According to inequality (36), we have \(W(t)^T({\mathcal {L}}\otimes I_{ml})W(t)\ge \frac{2\lambda _2}{\overline{\varTheta }} V(W)\). Therefore,

$$\begin{aligned} \frac{\mathrm{d}V(W(t))}{\mathrm{d}t}\le -\frac{2\gamma \lambda _2}{\overline{\varTheta }} V(W)=-\kappa V(W). \end{aligned}$$
(39)

Integrating both sides of (39) from 0 to t leads to

$$\begin{aligned} V\left( W(t)\right) \le V\left( W(0)\right) e^{-\kappa t}. \end{aligned}$$
(40)

According to inequality (35), we have

$$\begin{aligned} \sum _{i=1}^{N}\parallel W^*-W_i(t)\parallel ^2\le \frac{2}{\underline{\theta }}V(W(t))\le \frac{2}{\underline{\theta }}V(W(0))e^{-\kappa t}. \end{aligned}$$
(41)

It will be seen from this that \(W_i(t)\) exponential convergence to \(W^*\) when \(t\rightarrow \infty\). This implies that problem (18) \(W^*=\arg \min \nolimits _{W_i}(G(W_i)\) is solved. Then, our goal \(\lim \nolimits _{t\rightarrow \infty }W_i(t)=W^*,\forall i\in {\mathcal {V}}\) is achieved by CT-DCL algorithm (20). \(\tilde{f_i}^*(x)=Q_i(x)W^*\) is the estimation function of original function \(f_i(x)\).

The proof is completed. \(\square\)

Appendix B

Proof of Theorem 2

We also rewrite DT-DCL algorithm (23) in a matrix form as

$$\begin{aligned}{l} {\left\{ \begin{array}{ll} {W}(k+1)=-\gamma (H^T\!H+\sigma \!\otimes \!I_{ml})^{-1}\!({\mathcal {L}} \otimes I_{ml})\!W(k)+W(k)\\ {W}(0)=(H^T\!H+\sigma \otimes I_{ml})^{-1}H^TY \end{array}\right. }, \end{aligned}$$
(42)

where \(W(k),H,\sigma\) and Y are similar to the form in CT-DCL algorithm (33).

Proof

Consider DT-DCL algorithm (23), the discrete form of Lyapunov function candidate (34) is as follows:

$$\begin{aligned} {V}\left( W(k)\right) =&\frac{1}{2}\sum \limits _{i\in {\mathcal {V}}}\left( (W^*-W_i(k))^T(H_i^TH_i+\sigma _iI_{ml})\right. \nonumber \\&\left. \times (W^*-W_i(k))\right) . \end{aligned}$$
(43)

The following two inequalities are still established under discrete form:

$$\begin{aligned} {V}(W(k))&\ge \frac{\,\underline{\theta }\,}{\,2\,}\sum _{i=1}^{N}\parallel W^*-W_i(k)\parallel ^2. \end{aligned}$$
(44)
$$\begin{aligned} {V}(W(k))&\le \frac{\,\overline{\varTheta }\,}{\,2\lambda _2\,}W(k)^T({\mathcal {L}}\otimes I_{ml})W(k). \end{aligned}$$
(45)

Now, we are in the position to give the main result on the convergence of algorithm (23). Consider Lyapunov function candidate (43), whose difference is given by

$$\begin{aligned} \bigtriangleup {V\left( {W}(k+1)\right) }&= V\left( {W}(k+1)\right) -V\left( {W}(k)\right) \nonumber \\&=-\frac{1}{2}\sum _{i=1}^{N}\left( W_i(k)^T(H_i^TH_i+\sigma _iI_{ml})W_i(k)\right. \nonumber \\&\quad \left. -W_i(k+1)^T(H_i^TH_i+\sigma _iI_{ml})W_i(k+1)\right) \nonumber \\&\quad -W^{*T}\sum _{i=1}^{N}(H_i^TH_i+\sigma _iI_{ml})\left( {W_i}(k+1)-{W_i}(k)\right) . \end{aligned}$$
(46)

Under the discrete form, \(\sum\nolimits _{i=1}^{N}(H_i^TH_i+\sigma _iI_l)\left( {W_i}(k+1)-{W_i}(k)\right) =\gamma \sum\nolimits _{i=1}^{N}\sum \nolimits _{j\in {\mathcal {N}}_{i}}a_{ij}\left( W_j(k)-W_i(k)\right) =0\) according to DT-DCL algorithm (23). Then,

$$\begin{aligned}&\bigtriangleup {V\left( {W}(k+1)\right) }\nonumber \\&\quad =-\frac{1}{2}\sum _{i=1}^{N}\left( W_i(k)^T(H_i^TH_i+\sigma _iI_{ml})W_i(k)\right. \nonumber \\&\qquad \left. -W_i(k+1)^T(H_i^TH_i+\sigma _iI_{ml})W_i(k+1)\right) . \end{aligned}$$
(47)

By increasing and decreasing function terms, we have

$$\begin{aligned}&\bigtriangleup {V\left( {W}(k+1)\right) }\nonumber \\&\quad =-\frac{1}{2}\sum _{i=1}^{N}\left( \left( {W_i}(k+1)-{W_i}(k)\right) ^T(H_i^TH_i+\sigma _iI_{ml})\right. \nonumber \\&\qquad \left. \times \left( {W_i}(k+1)-{W_i}(k)\right) \right) +\sum _{i=1}^{N}\left( {W_i}(k+1)-{W_i}(k)\right) ^T\nonumber \\&\qquad \times (H_i^TH_i+\sigma _iI_{ml})W_i(k+1)\nonumber \\&\quad \le \sum _{i=1}^{N}\left( {W_i}(k+1)-{W_i}(k)\right) ^T(H_i^TH_i+\sigma _iI_{ml})W_i(k+1)\nonumber \\&\quad =\left( {W}(k+1)-{W}(k)\right) ^T(H^TH+\sigma \otimes I_{ml})W(k+1)\nonumber \\&\quad =-\gamma W(k)^T({\mathcal {L}}\otimes I_{ml})W(k+1). \end{aligned}$$
(48)

Due to (42), we obtain

$$\begin{aligned}&\bigtriangleup {V\left( {W}(k+1)\right) }\nonumber \\&\quad \le -\gamma W(k)^T({\mathcal {L}}\otimes I_{ml})\left[ W(k)\right. \nonumber \\&\qquad \left. -\gamma (H^TH+\sigma \otimes I_{ml})^{-1}({\mathcal {L}}\otimes I_{ml})W(k)\right] \nonumber \\&\quad =-\gamma W(k)^T({\mathcal {L}}\otimes I_{ml})W(k)+\gamma ^2W(k)^T({\mathcal {L}}\otimes I_{ml})\nonumber \\&\qquad \times (H^TH+\sigma \otimes I_{ml})^{-1}({\mathcal {L}}\otimes I_{ml})W(k)\nonumber \\&\quad \le -\gamma W(k)^T\left[ ({\mathcal {L}}\otimes I_{ml})-\frac{1}{\bar{\lambda }}\gamma \left( {\mathcal {L}}^2\otimes I_{ml}\right) \right] W(k), \end{aligned}$$
(49)

where \(\bar{\lambda }=\lambda _{min}(H^TH+\sigma \otimes I_{ml})\).

Because of \({\mathcal {L}}^2\le \eta {\mathcal {L}}\), where \(\eta =\lambda _{max}({\mathcal {L}})\). Then, it follows that

$$\begin{aligned} \bigtriangleup&{V\left( {W}(k+1)\right) }\le -\gamma (1-\frac{\eta \gamma }{\bar{\lambda }})W(k)^T({\mathcal {L}}\otimes I_{ml})W(k). \end{aligned}$$
(50)

If \(\gamma\) can be chosen such that \(0<\gamma <\frac{\bar{\lambda }}{\eta }\), \(\{V\left( {W}(k)\right) \}_{k=0}^{\infty }\) is nonnegative and non-increasing.

Due to (45), we obtain

$$\begin{aligned} V\left( {W}(k+1)\right) -V\left( {W}(k)\right) \le -\frac{ \gamma \lambda _2}{\overline{\varTheta }}(1-\frac{\eta \gamma }{\bar{\lambda }})V\left( {W}(k)\right) . \end{aligned}$$
(51)

Then,

$$\begin{aligned} V\left( {W}(k+1)\right) \le \varepsilon V\left( {W}(k)\right) , \end{aligned}$$
(52)

where \(\varepsilon =1-\frac{2 \gamma \lambda _2}{\overline{\varTheta }}(1-\frac{\eta \gamma }{\bar{\lambda }})\).

Because of \(0<\gamma <\frac{\bar{\lambda }}{\eta }\), then, \(0<1-\frac{\eta \gamma }{\bar{\lambda }}<1\). And because \(\{V\left( {W}(k)\right) \}_{k=0}^{\infty }\) is nonnegative and non-increasing, thus \(0<\frac{2 \gamma \lambda _2}{\overline{\varTheta }}(1-\frac{\eta \gamma }{\bar{\lambda }})<1\), so \(\gamma\) just need can be chosen such that \(0<\gamma <\frac{\,\overline{\varTheta }\,}{\,2\lambda _2\,}\).

Therefore, based on the above analysis, if \(\gamma\) can be chosen such that \(0<\gamma <\min \{\frac{\,\overline{\varTheta }\,}{\,2\lambda _2\,},\frac{\bar{\lambda }}{\eta }\}\), then \(0<\varepsilon <1\), and \(\{V\left( {W}(k)\right) \}_{k=0}^{\infty }\) is nonnegative and non-increasing.

Due to (52), we obtain

$$\begin{aligned} V\left( {W}(k)\right) \le \varepsilon V\left( {W}(k-1)\right) \le \cdots \le \varepsilon ^k V\left( {W}(0)\right) . \end{aligned}$$
(53)

According to inequality (44), we have

$$\begin{aligned} \sum \limits _{i\in {\mathcal {V}}}\parallel W^*-W_i(k)\parallel ^2&\le \frac{2}{\underline{\theta }}V\left( {W}(k)\right) \le \frac{2}{\underline{\theta }}V\left( W(0)\right) \varepsilon ^{k}. \end{aligned}$$
(54)

Because of \(0<\varepsilon <1\), then, our goal \(\lim \nolimits _{k\rightarrow \infty }W_i(k)=W^*\), \(\forall i\in {\mathcal {V}}\) is achieved by DT-DCL algorithm (23). \(\tilde{f_i}^*(x)=Q_i(x)W^*\) is the estimation function of original function \(f_i(x)\).

The proof is completed. \(\square\)

Appendix C

Proof of the inequality (36)

Proof

From optimization problem (18), we have \(g_i(W_i)=\frac{1}{2}\left( \parallel Y_i-H_iW_i\parallel ^2 +\sigma _i \parallel W_i\parallel ^2\right)\), then

$$\begin{aligned}&\sum _{i=1}^{N}\left( g_i(W^*)-g_i(W_i(t))-\bigtriangledown {g_i\left( W_i(t)\right) }^T(W^*-W_i(t))\right) \nonumber \\&\quad =\sum _{i=1}^{N}\left( \frac{1}{2}\left( \parallel Y_i-H_iW^*\parallel ^2 +\sigma _i \parallel W^*\parallel ^2\right) \right. \nonumber \\&\qquad -\frac{1}{2}\left( \parallel Y_i-H_iW_i\parallel ^2 +\sigma _i \parallel W_i\parallel ^2\right) \nonumber \\&\qquad \left. (-H_i^TY_i+H_i^TH_iW_i+\sigma _iW_i)^T(W^*-W_i(t))\right) \nonumber \\&\qquad \vdots \nonumber \\&\quad =\sum _{i=1}^{N}\left( \frac{1}{2}(W^*-W_i)^T(H_i^TH_i+\sigma _iI_{ml})(W^*\!\!-\!\!W_i)\right) \nonumber \\&\quad =V(W(t)). \end{aligned}$$
(55)

Thus, the following inequality holds [44]:

$$\begin{aligned} V(W(t))&\le \frac{\overline{\varTheta }}{2}\sum _{i=1}^{N} \parallel W_i(t)-\frac{1}{N}\sum _{j=1}^{N}W_j(t)\parallel ^2\nonumber \\&= \frac{\overline{\varTheta }}{2N}W(t)^T(\tilde{\mathcal {L}}\otimes I_{ml})W(t), \end{aligned}$$
(56)

where \(\tilde{\mathcal {L}}\in {\mathbf{R}}^{N\times N}\) is the Laplacian matrix of the complete graph \(\tilde{{\mathcal {G}}}\).

For the undirected and connected graph \({\mathcal {G}}\), the following inequality holds [44]:

$$\begin{aligned} \lambda _2\tilde{\mathcal {L}}\le N\mathcal {L}. \end{aligned}$$
(57)

Substituting (57) into (56), we have

$$\begin{aligned} V(W(t))&\le \frac{\overline{\varTheta }}{2N}\frac{N}{\lambda _2}W(t)^T(\mathcal {L}\otimes I_{ml})W(t)\nonumber \nonumber \\&=\frac{\overline{\varTheta }}{2\lambda _2}W(t)^T(\mathcal {L}\otimes I_{ml})W(t). \end{aligned}$$
(58)

The proof is completed. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Chen, W. & Dai, H. Distributed cooperative learning algorithms using wavelet neural network. Neural Comput & Applic 31, 1007–1021 (2019). https://doi.org/10.1007/s00521-017-3134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3134-1

Keywords

Navigation