Skip to main content
Log in

Nuclear reconstructive feature extraction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aizenberg I (2017) Multiple-valued logic and complex-valued neural networks. Stud Fuzziness Soft Comput 349:153–171

    Article  Google Scholar 

  2. Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit 43(10):3605–3620

    Article  MATH  Google Scholar 

  3. Belachew M, Del Buono N (2017) A dynamical system approach for continuous nonnegative matrix factorization. Mediterr J Math 14(1):14

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM (JACM) 58(3):11

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao P, Liu X, Zhang J, Li W, Zhao D, Huang M, Zaiane O (2017) A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in lung nodule cad. Comput Methods Programs Biomed 140:211–231

    Article  Google Scholar 

  7. de Carvalho Pagliosa L, de Mello R (2017) Applying a kernel function on time-dependent data to provide supervised-learning guarantees. Expert Syst Appl 71:216–229

    Article  Google Scholar 

  8. De La Torre F, Black MJ (2003) A framework for robust subspace learning. Int J Comput Vis 54(1–3):117–142

    Article  MATH  Google Scholar 

  9. Ding W, Gu J, Shang Z, Tang S, Wu Q, Duodu E, Yang Z (2017) Semantic recognition of workpiece using computer vision for shape feature extraction and classification based on learning databases. Optik 130:1426–1437

    Article  Google Scholar 

  10. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  11. Gamba IM, Zhang C, Fan J (2014) A conservative discontinuous Galerkin scheme with o (n 2) operations in computing Boltzmann collision weight matrix. In: AIP Conference Proceedings, vol 1628, AIP, pp 75–83

  12. Geng Y, Liang RZ, Li W, Wang J, Liang G, Xu C, Wang JY (2016) Learning convolutional neural network to maximize pos@top performance measure. In: ESANN

  13. Geng Y, Zhang G, Li W, Gu Y, Liang G, Wang J, Wu Y, Patil N, Wang JY (2017) A novel image tag completion method based on convolutional neural network. In: International conference on artificial neural networks. Springer

  14. He X, Cai D, Yan S, Zhang HJ (2005) Neighborhood preserving embedding. In: Tenth IEEE international conference on computer vision (ICCV’05) volume 1, vol 2. IEEE, pp 1208–1213

  15. He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems

  16. Hnin H, Pa W, Thu Y (2017) Back-propagation neural network approach to Myanmar part-of-speech tagging. Adv Intell Syst Comput 536:212–220

    Google Scholar 

  17. Jia X, Sun F, Li H, Cao Y, Zhang X (2017) Image multi-label annotation based on supervised nonnegative matrix factorization with new matching measurement. Neurocomputing 219:518–525

    Article  Google Scholar 

  18. Jieyi Z, Min T, Ruofeng T, Jinxiang D (2008) The platform of quick development of mobile 3d game. In: International Symposium on computer science and computational technology, 2008. ISCSCT’08, vol 2. IEEE, pp 226–229

  19. Jin Y, Qian GP, Zhao JY, Chang J, Tong RF, Zhang J (2015) Stretch-minimizing volumetric parameterization. J Comput Sci Technol 30(3):553–564

    Article  Google Scholar 

  20. Li LS, Gan SJ, Yin XD (2017) Feedback recurrent neural network-based embedded vector and its application in topic model. Eurasip J Embed Syst 2017(1):5

    Article  Google Scholar 

  21. Li Q, Zhou X, Gu A, Li Z, Liang RZ (2016) Nuclear norm regularized convolutional Max Pos@Top machine. Neural Comput Appl. doi:10.1007/s00521-016-2680-2

  22. Li Y, Liang X, Xu M, Huang W (2017) Early fault feature extraction of rolling bearing based on icd and tunable q-factor wavelet transform. Mech Syst Signal Process 86:204–223

    Article  Google Scholar 

  23. Liu J, Byna S, Chen Y (2013) Segmented analysis for reducing data movement. In: Big Data’13, 2013 IEEE international conference on Big Data. IEEE, pp 344–349

  24. Liu J, Chen Y (2012) Improving data analysis performance for high-performance computing with integrating statistical metadata in scientific datasets. In: High performance computing, networking, storage and analysis (SCC), 2012 SC companion. IEEE, pp 1292–1295

  25. Liu J, Chen Y, Zhuang Y (2013) Hierarchical i/o scheduling for collective i/o. In: 2013 13th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid). IEEE, pp 211–218

  26. Liu J, Crysler B, Lu Y, Chen Y (2013) Locality-driven high-level i/o aggregation for processing scientific datasets. In: Big Data’13, 2013 IEEE international conference on Big Data. IEEE, pp 103–111

  27. Liu S, Liu Z, Sun J, Liu L (2011) Application of synergetic neural network in online writeprint identification. Int J Digital Content Technol Appl 5(3):126–135

    Article  MathSciNet  Google Scholar 

  28. Ma G, Wang Y, Wu L (2017) Subspace ensemble learning via totally-corrective boosting for gait recognition. Neurocomputing 224:119–127

    Article  Google Scholar 

  29. Miao M, Zeng H, Wang A, Zhao C, Liu F (2017) Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: an sparse regression and weighted naive Bayesian classifier-based approach. J Neurosci Methods 278:13–24

    Article  Google Scholar 

  30. Mirian NS, Sedehi M, Kheiri S, Ahmadi A (2017) Joint prediction of occurrence of heart block and death in patient with myocardial infarction with artificial neural network model. Koomesh 19(1):241–247

    Google Scholar 

  31. Shahnawazuddin S, Sinha R (2017) Sparse coding over redundant dictionaries for fast adaptation of speech recognition system. Comput Speech Lang 43:1–17

    Article  Google Scholar 

  32. Shang R, Wang W, Stolkin R, Jiao L (2016) Subspace learning-based graph regularized feature selection. Knowl Based Syst 112:152–165

    Article  Google Scholar 

  33. Shi Y, Wan Y, Wu K, Chen X (2017) Non-negativity and locality constrained Laplacian sparse coding for image classification. Expert Syst Appl 72:121–129

    Article  Google Scholar 

  34. Tan M, Hu Z, Wang B, Zhao J, Wang Y (2016) Robust object recognition via weakly supervised metric and template learning. Neurocomputing 181:96–107

    Article  Google Scholar 

  35. Tang M, Zhao JY, Tong RF, Manocha D (2012) GPU accelerated convex hull computation. Comput Graph 36(5):498–506

    Article  Google Scholar 

  36. Teng Y, Xie X, Liu Y, Lu B, Guo C, Zhang Y, Kang Y (2017) Smoothing nonnegative matrix factorizations and its application to extraction of time activity curve in dynamic brain pet. J Med Imaging Health Inform 7(1):224–228

    Article  Google Scholar 

  37. Wang Q, Chen F, Gao Q, Gao X, Nie F (2016) On the Schatten norm for matrix based subspace learning and classification. Neurocomputing 216:192–199

    Article  Google Scholar 

  38. Wang T, Zheng W, Wuyun Q, Wu Z, Ruan J, Hu G, Gao J (2017) Pras: prediction of amidation sites using multiple feature extraction. Comput Biol Chem 66:57–62

    Article  Google Scholar 

  39. Wen H, Liu Y, Rekik I, Wang S, Chen Z, Zhang J, Zhang Y, Peng Y, He H (2017) Multi-modal multiple kernel learning for accurate identification of tourette syndrome children. Pattern Recognit 63:601–611

    Article  Google Scholar 

  40. Wen Z, Yin W (2013) A feasible method for optimization with orthogonality constraints. Math Program 142(1–2):397–434

    Article  MathSciNet  MATH  Google Scholar 

  41. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  42. Yang Z, Ce L, Lian L (2017) Electricity price forecasting by a hybrid model, combining wavelet transform, arma and kernel-based extreme learning machine methods. Appl Energy 190:291–305

    Article  Google Scholar 

  43. Yu Z, Wang D, You J, Wong HS, Wu S, Zhang J, Han G (2016) Progressive subspace ensemble learning. Pattern Recognit 60:692–705

    Article  Google Scholar 

  44. Zhang C, Gamba IM (2016) A conservative scheme for vlasov poisson landau modeling collisional plasmas. arXiv preprint arXiv:1605.05787

  45. Zhang C, Gamba IM, Ketsdever A, Struchtrup H (2016) Deterministic conservative solver for the inhomogeneous Fokker–Planck–Landau equation coupled with poisson equation. In: AIP conference proceedings, vol. 1786. AIP Publishing, p 180008

  46. Zhang S, Wang J, Tao X, Gong Y, Zheng N (2017) Constructing deep sparse coding network for image classification. Pattern Recognit 64:130–140

    Article  Google Scholar 

  47. Zhang X, Liu Z, Liu S, Li D, Jia Y, Huang P (2017) Sparse coding of 2D-slice zernike moments for SAR ATR. Int J Remote Sens 38(2):412–431

    Article  Google Scholar 

  48. Zhao JY, Tang M, Tong RF (2012) Connectivity-based segmentation for GPU-accelerated mesh decompression. J Comput Sci Technol 27(6):1110–1118

    Article  Google Scholar 

  49. Zhu F, Honeine P (2017) Online kernel nonnegative matrix factorization. Signal Process 131:143–153

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Sichuan Provincial Department of Education research project “Under the big data based on the research of heterogeneous data conversion and transmission platform (Grant No. 16ZB0360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Ethics declarations

Conflict of interests

The authors of this submission are stating no conflict of interests with the work presented in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, D. & Pu, G. Nuclear reconstructive feature extraction. Neural Comput & Applic 31, 2649–2659 (2019). https://doi.org/10.1007/s00521-017-3220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3220-4

Keywords

Navigation